
9. Electrons in Semiconductors 
M: - nothing 
B&S: p199 – 201 
K&K: p353 – 372 
H&H: chapters 4.1, 4.2, 5.2, 5.3 
 
9.1 Nearly Free Electrons – Energy Bands 
Consider a 1D solid. Have a potential ! = V  keeping the electrons confined within an 
area of length L , potential ! . 
(9.1-1) 
Free electron potential: the potential V confines the electrons in the box. 
 
True potential 
(9.1-2) 
Periodic potential: V x( ) = V x + a( )  
Weak between the ions. The potential can be considered to be weak – only has a big 
effect on electrons of a particular set of wavelengths – those which satisfy the Bragg 
Scattering condition. 

2d sin! = n"  
For us, d = a  and ! = 90° . 
(9.1-3) 
2a = n! condition for constructive interference. 

! =
2a

n
, n = 1,2,3,...  for Bragg diffraction. 

The incident wave plus the Bragg reflected wave gives rise to a standing wave. 
Incoming wave: e! ikx  
Reflected wave: eikx  
e
! ikx

± e
ikx
" coskx  or sin kx . 

! =
2a

n
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, n = ±1,÷2,...  

For free electrons, the energy 
 

E =
!
2
k
2

2m
  dispersion curve for free electrons. 

(9.1-4) 

So the parabola is broken up into different energy bands. Between !
"

a
 and 

!

a
 is the 

first energy band. It is separated from the second energy band by a band gap 
E
G
= E

B
! E

A
, where A and B denote the lower and higher energy levels respectively 

of the jump in the curve. 

The effect of the periodic potential is small, except for k !
n"

a
. 

Reason for the band gap at k =
!

a
: ! = 2a . 

(9.1-5) 
If we look at !

A
, then there is a high probability that the electrons will be near the 

ion core. This is a low energy state. !
B

, on the other hand, has a high probability of 
the electrons being in between the ions, which is a high energy state. 
 



Two important comments: 
1. Because states at A and B are standing waves, their group velocity is 0. 
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Therefore e k( )  must have zero slope at A and B. 
2. Each energy band contains 2N states (N =  number of atoms) 

The number of states = the volume of K-space in each band 
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where 2 is the spin degeneracy. 2!
a

= dk
"
!

a

!

a# . 
2!

L
 is the spacing of states in k-

space. 
 
9.2 Metals, Insulators and Semiconductors 
Consider T = 0 . 
a) Monovalent Materials  N electrons 
(9.2-1) 
The first band is ½ full. 
Each band can contain up to 2N  electrons. N electrons have to be put into the band 
for a Monovalent material. Electrons at ! f  have empty states nearby in energy, 
therefore can create an electric current. 
 

a) Monovalent material 
More electrons traveling to the right than to the left  current . Therefore 
Monovalent atom  metallic solid. 

b) Divalent material  2N electrons 
First band – valence band – completely full. Most energetic electrons are in 
states most affected by lattice (ion core) potential, therefore very non-free-
electron-like. 
No nearby energy states to move into. Therefore no conduction. Therefore 
insulator. (but divalent metals do exist, e.g. Mg – need to think in 3D to 
explain how this happens  overlapping bands.) 

c) Trivalent material  3N  electrons. 
Actually fill first band and half, not 2 ½ bands. 
1 - ½ bands full  metal. 
In a pure semiconductor at T = 0  has a completely full band (the valence 
band). The next band above is completely empty. Therefore at T = 0  it is an 
insulator. However the band gap E

G
 is sufficiently small to allow thermal 

excitation of electrons from the KB to the CB at finite T. e.g. Silica 
E
G
= 0.6eV . At room temperature, ~ 1

40
eV . 

 
9.3 Pure (Intrinsic) Semiconductor 
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valid near minimum of conduction band because 
d!

dk
= 0 . 

 

! = "
!

2m
k

k " k
0( )
2  - valid near max of VB. 

Conventional to shift zero of energy to top of the VB. 
NB: m

e
 and m

k
 are determined by the band structure – can be very different to bare 

electron mass. 
 
9.3.1 Density of States for Electrons and Holes 
NB: 
Band width: few eV 
Band gaps: ~ 1eV 
k
B
T  at room temp ~ 1

40
eV  

Usually only interested in states within k
B
T of band edge, therefore above dispersion 

relations adequate. 
Below 0: 
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Proof: suppose min. of CB occurs at k = k
0

. 
Draw a spherical shell radius k '  thickness dk  centered on k

0
. 

Contain V
k '
2

2!
2
dk '  states. 

 

These states have energy ! " ! + d!  where 
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Number of electron states between !  and ! + d! : 

= 2
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k 'k 'dk '  

where the first 2 comes from spin degeneracy. 
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 similar arguament for VB. 
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NB: the minimum of the CB and the max of the VB need not be at the same point in 
k-space. If they are  direct band-gap semiconductor. If they are not  indirect 
band-gap semiconductor. 
 
9.3.2 Number of Electrons in the Conduction Band 
The average number of electrons in a state of energy !  when we have the chemical 
potential µ  is: 
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The number of electrons in the conduction band / volume: 
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Remember that m
e
 is the effective mass of the electron. 

Usually ! " µ( )# >> 1 , i.e. small number of electrons in the conduction band. Then: 
1

e
! "µ( )# +1

$ e" ! "µ( )#  

This is the classical Boltzmann Distribution. The electrons in the conduction band of 
a semi-conductor often behave like a classic gas of particles of mass m

e
. 
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e

 is the thermal de Broglie wavelength for the electrons. 

e
! EG !µ( )"  is the Boltzmann factor for ! = E

G
 

N
c
 is the effective number of states for electrons in the conduction band if all the 

electrons are at the band-edge. 
Above calculation does not make any assumptions about the purity of the 
semiconductor. It is valid also for doped semiconductors. 
 
9.3.3 Number of Empty States (holes) in the Valence band 
The number of holes in the state of energy !  is 
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Therefore the total number of holes / volume: 
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The lower limit does not matter as 1! f "( )# 0  cuts off the integral. 
Usually µ ! "( )# >> 1   small number of holes in the valence band. 
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where m
h

 is the mass of the hole. 
Make a substitution !"# = k

2  
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Th

 is the thermal de Broglie wavelength of the valance band holes. 
N

v
 can be thought of as the effective number of states for holes in the valance band if 

all are sitting at the band edge. 
The above results are valid for both pure and impure semiconductors. 
 
Question: how is the number of holes related to the number of electrons in the 
conduction band? 
Answer: n = p , i.e. the electrons in the conduction band are the electrons excited out 
of the valance band. This is only true for pure semiconductors. 
 
So for pure semiconductors: 
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Therefore at T = 0 , µ  is in the middle of the band gap. Small shift only at room 
temperature. 
 


