
3. Lattice Dynamics 
 
3.1 1D Chain of Identical Atoms 
We will study the 1D problem, and then generalize to 3D. Consider a classical chain 
of N  atoms (later N !" ). Treat the interactions between the atoms as springs 
(spring constant k ) between nearest neighbours, with motion parallel to the chain. 
 

 
 
Apply Newton’s second law to j th  atom. 

 
m!!uj = k u j+1 ! uj( ) ! k u j ! uj!1( )  
Apply periodic boundary conditions. uj

= u
j+N . 

Look for wave-like solution uj = u0e
i Qja!" t( ) , where ja  is the position, and Qwill 

correspond to some wavenumber. 

The boundary condition implies ei QNa( )
= 1 , so Q =
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 where n  is an integer. 

Put trial solution into the equation of motion, and divide through by the common 
factors. 
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Take positive solution with n  from 1 to N . 
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Plot sin(1.8pi * x/a) vs sin(-0.2pi * x/a) for 0, 2a, 3a, … and x between 1 and -1. 
 
At a, 2a, 3a, etc. the two functions have the same value. i.e. everywhere there’s an 
atom, the functions are the same. Where they are not the same, it doesn’t matter, as 
there’s nothing there. 
 
Brillouin Zone 
The Brillouin Zone is the primitive unit cell in the reciprocal lattice chosen in such a 
way that all points in the zone are closer to one reciprocal lattice point than to any 
other. 
 
We usually represent the lattice dynamics in one Brillouin zone. The wavevector Q( )  
mapped with the Brillouin zone (reduced wavevector) represented by q . 
 
Dispersion Relation 

Group velocity is 
d!

dq
. 

This is usually 0 at the zone boundaries.  

The phase velocity is 
!

q
.  

If small q, relation is usually linear, so group velocity and the phase velocity are the 
same. In general, this is not true. 
 
 
 



3.2 Diatomic Linear Crystal 
This is a 1D crystal with two types of atoms. For simplicity, we will model springs 
with the same force constants between nearest neighbours. 

 
Apply Newton’s Second Law 
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Apply periodic boundary conditions. 
u
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Look for wavelike solutions. 
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But now, there are 2N degrees of freedom. 
Put the trial solutions into the equations of motion, and divide through by the common 
factors. 
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This is a pair of simultaneous equations in ! 2 . Write them in matrix form. 
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this is true for non-zero solutions u
10
,u

20
 when the determinant of the matrix is 0. 
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This is now a quadratic equation in ! 2 . 
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Write it in the standard form for a quadratic. 
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use the quadratic formula. 
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For each q value, we now have two positive values of ! . We have N  values of q , 
but 2N  degrees of freedom. There are thus two branches of vibrational excitation. 
 
http:/solidstate.physics.sunysb.edu/teach/intlearn/ 
 

 
For m
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For q = 0 , put it into (1) and (2). 
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For ! = 0 , then u
10
= u

20
. i.e. the two atoms are vibrating in phase, with the same 

amplitude. 
Solution (1), q = 0 , ! = 0  
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In (1): 
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Solution (2) is the atoms in antiphase, with zero movement of the centre of gravity for 
each pair. 

 
For the zone boundary, where q = !

a
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These simplify to 
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1
 atoms are stationary, and the neighbouring m
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atoms vibrate in antiphase. 
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3.3 Linear Crystal – one type of atom, but two different springs 
Solutions also give two branches, as there are two atoms in the basis. 
In 1D, the number of branches is equal to the number of atoms in the basis. 
One, and only one, mode is acoustic. This means that the frequency goes to 0 as the 
wavevector goes to 0. 



3.4 Vibrations in 3 Dimensions 
In general, the atoms are bound in a potential which gives restoring forces in 3 
dimensions, which are not necessarily the same. Each atom has 3 degrees of 
(vibrational) freedom, so the number of modes is equal to three times the number of 
atoms in the basis. Three of these modes are acoustic; one longitudinal, two 
transverse. 
 
Speed of Sound 
The velocities of the compression (longitudinal) and the shear (transverse) waves are 
not the same. Where the transverse waves are not constrained by symmetry to be the 
same, they are different. The symmetry constraint is a 4- or 3-fold rotation axis. 
Longitudinal speeds are usually about twice the transverse. 
 

Speeds in solids are typically 103ms!1 , or  10THz A
!

. 
 
3.5 Quantum Effects in Lattice Dynamics 
In the harmonic approximation, the Hamiltonian is the sum of the 3N independent 
oscillator Hamiltonians, all of which commute. The quantum mechanical frequencies 
turn out to be the same as those of the classical normal modes. 
 
The energy in any given mode ! q( ) , where q is the reduced wavevector, is given by 
Bose-Einstein statistics with zero chemical potential. 
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where n  is an integer. The expected value for n  is 
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So we can treat the occupied vibrational states as Bose particles, just like photon 
states, which are occupied EM wave states in a box. By analogy, the quantized 
vibrational states in a solid are called phonons (quantized sound waves). 
 
Examples of phonon dispersion relations 
Diagrams will be on the Teaching Web. 
 
3.7 Neutron Inelastic Scattering 
Static (time averaged) lattice gives the Bragg scattering. Phonons can scatter neutrons 
(and X-rays), but the neutron energy changes on scattering. For neutrons the energy 
change is significant compared with the incident energy. For X-rays, the change is a 
very small fraction (10’s of mV compared with 10’s of kV). 
 
Peaks in the scattering when the energy change on scattering and the momentum 
change (Q ) lie on a phonon dispersion curve. 
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3.8 Specific Heat 

C
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Classical specific heat, equipartition says that the energy for each quadratic term is 
1
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This is Dulong & Petit’s Law. 
In the quantum case, the high T limit of the energy is the same. When 
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Fails at low T. 
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Density of States: 
Energy of a .phonon defines its’ thermal effects. Therefore we need to see how many 
phonons have which energy. 

 
Features: 

- Always a maximum energy 
- Shape can be very complicated 
- Depends on dispersion relation 
- Always quadratic at small energies 
- Can have sharp peaks, discontinuities, energy gaps. 

 
3.8.1 Einstein Model 
We represent the density of states by a single energy !

E
. 
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This is an exact result. We can then differentiate it to get the heat capacity. 

 

C
v
= 3

N

V
k
B

!!
E
"( )

2

e
!!E"

e
!!E" #1( )

2
 

At the high T limit (T !" , ! " 0 ), we get 3
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As T ! 0 , we get an exponential decay. This is broadly correct, but in fact it falls too 
quickly to 0 as T ! 0 . 
This suggests that Quantum Mechanics provides an explanation of the deviations 
from the Dulong and Petit law, but we need a better model to get the correct form. 
 
3.8.2 Debye Model 
Consider 3 acoustic phonon modes, all with the same velocity, and all linear with no 
deviations. 
 
q-space density of states: 
Do sum in cubic box – in fact it is independent of the shape, but a cubic box is easiest. 
Cube of edge L , volume V = L

3 . 
What standing wave states are allowed? 
! = 0  on walls. Look at the x-direction. 
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Consider the other directions. We will have: 
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This only makes sense for positive integers nx ,ny ,nz . 
This can then be plotted in q-space. 
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The density of states ! q( )dq =
V

" 3
dq . 

We are only concerned with the magnitude q = q . These are the states within a 
spherical shell of radius q  and thickness dq . 
The volume within the shell will be the surface area times the thickness. Remember 
that we are looking only at the positive octant, so 1 / 8  of a complete shell. 
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To find the density of states as a function of energy, g !( )d! , we write ! q( )  using 

! q( ) , and dq  using 
d!

dq
. 

For phonons, ! q( )dq = 3
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dq  where the 3 has come from the 3 polarization states; 

two transverse, one longitudinal. 
Assume that ! = vq , where v is the (average) speed of sound. 
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With the Debye model, we treat the density of states as quadratic up to a maximum 
frequency, the Debye frequency !

D
. 

To get this frequency, use 
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We now want to find the total energy in these phonons. 
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We can now substitute 
 
k = !!" , and note that the zero-point energy does not depend 

on temperature, hence will not come into the specific heat, and can be neglected. 
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At the low temperature limit, we can make the approximation 
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This gets the low-temperature form correct T 3( ) . 
 
For the full specific heat as a function of temperature curve, we need the full density 
of states, and do the integrals numerically. 
 
 
 
Note in real crystals, there are three speeds of sound which are not in general equal. 
We can treat v  in the calculation above as an effective average speed of sound. 


