
5. Semiconductors 
The nearly free electron model applies equally in the case where the Fermi level lies 
within a small band gap (semiconductors), as it does when the Fermi level lies within 
a band (metal). By small, we mean that there is thermal excitation of electrons from 
one band to the next, below the melting temperature. In practice, the gap energy needs 
to be less than about 2eV . 

 
Note that it is traditional to draw the diagram for semiconductors rotated 90 degrees, 
i.e. the version on the right above. 
 
5.1 Semiconductor Bandstructures 
There is no Fermi sphere, so we need to look at details of bandstructure near the gap. 
A direct gap semiconductor arises when the maximum energy of the valence band is 
at the same wavevector as the minimum energy of the conduction band. In this case 
excitation across the band gap can be brought about by photon absorption. 
 
On the scale of the Brillouin Zone (~1 / 1 Angstrom), the photon momentum is very 
small. E.g. a 1eV  photon has momentum ~ 5 !10"4

A
"1  (where A is an Angstrom). 

This reflects the fact that the speed of light is much greater than the electron speeds. 
 
An indirect semiconductor has the maximum energy of valence band not at the same 
wavevector as the minimum of conduction band. Excitation across the band gap 
requires a phonon creation (or absorption) to take up the momentum. This makes the 
process much less likely. 
 
Note that in general, effective masses are not isotropic (the same in all directions). 
The effective mass in general is a tensor. 
 
 
 
 
 
 
 
 



Indium Antimonite 
This is a direct gap semiconductor. 

 
 
Germanium 
An indirect gap semiconductor 

 
 
The effective mass for the conduction band is a tensor. 
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5.1 Intrinsic Semiconductor 
Observed when the semiconductor is sufficiently pure. Use an ‘average’ effective 
mass m

c
 in the conduction band, and m

v
 in the valence band. The energy !  in the 

conduction band with respect to the minimum energy !
c
: 
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where we have already put in the factor of 2 due to degeneracy of spin states. We 
need to convert that to the density of states in energy. 
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The number of electrons in the conduction band, n , is: 
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Correspondingly, the number of holes in the valence band, p , is 
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where 1! f "( )  gives us the unoccupied states. 
 
The Fermi function is very small near the top of the conduction band, so we can 
replace the limit by infinity. The same argument can be used for the number of holes 
integral. 
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We can assume that !
c
" µ( )# >> 1 , and µ ! "

v( )# >> 1 . So 
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So, 
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The product 
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where !g = !
c
" !

v . This is independent of the chemical potential µ . 
 
In a pure semiconductor, n

i
= p

i
 (intrinsic n  and p ), Hence this is equal to 
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Putting this back into the expression for n  means that we can find that the chemical 
potential for intrinsic semiconductors is 
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So µ  is the midpoint of the gap at T = 0 , and lies within a fraction of k
b
T  of the 

midpoint at finite temperature in intrinsic semiconductors. 
 
5.3 Extrinsic Semiconductor 
Introduce 1 atom of As (Group 5) into Ge (Group 4). Each Ge has 4 electrons in the 
valence band, while As has 5. 
If we consider the As to be like Ge, then we have an extra proton and electron – the 
constituents of a hydrogen atom. Assume that the extra electron is loosly bound, 
moving in the conduction band with effective mass m* . 
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where we have introduced the dielectric constant, which reduces the forces between 
the atoms. For Ge , ! ~ 15.8 . The binding energy for the electron is 
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The binding energy of the hydrogen atom is 13.6eV . m*
/ m

e
 is 0.23. ! 2 = 0.004 . 

Hence E
0
= 12meV  (milli-electron-volts). 

 



The Bohr radius of the atom is, 
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The Bohr radius for the hydrogen atom is 0.53A . m
e
/ m

*
= 4.3 . This means that the 

radius is 36 Angstrom. 
 
We conclude that the extra electron is loosely bound, and the use of the bulk dielectric 
constant is reasonable. 
 
There is a similar argument for adding an atom with one less electron to the 
semiconductor, which gives the acceptor impurity states. 

 
Donor impurity states energy !

d
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Usually there are impurities of both types (acceptors and donors) present. Suppose 
that there are more donors n

d
 than acceptors n

a
. 

 



This requires the chemical potential to be at the donor level, µ = !
d

 (the Fermi level 
is in the only state which can have partly-filled states; this is that of the donor state). It 
will not move far at finite temperature while there are un-ionized donors. 
Using the expression for n  derived earlier, 
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When all the donors are ionized, the number of carriers will reach a plateau at 
n
d
! n

a
. 

 
At higher temperatures, when the number of intrinsic carriers becomes comparable 
with the number of impurities, µ  ends up near the middle of the gap, just as it did in 
the intrinsic case, and n  reverts to its intrinsic value. 

 

The intrinsic slope is ~ !
"g

2kB
. The extrinsic slope is ~ ! "

c
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Note that the number of electrons is greater in the extrinsic region than the intrinsic 
value at the same temperature. 
 
A semiconductor with more donors than acceptors is called n-type, and one with more 
acceptors than donors is called p-type. 
 
Note that even when there are impurities present, 
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as before, and this may be used to calculate the number of minority carriers at any 
temperature once the number of majority carriers has been established. 
 
5.4 Intrinsic v Extrinsic 
How pure do materials need to be to see intrinsic behaviour at room temperature? For 
germanium, n

i
T = 300k( )  is 1.6 !1018m"3 , compared to the number density of 

atoms which his 4.4 !1028m"3 . So purity needs to be better than 1 part in 1010 . In 
silicon, the requirement is even stricter because the band gap is larger. 



Zone refining 
Take a bar of the required semiconductor material. Melt a small zone. Very slowly 
move this zone down the bar. The impurities prefer to remain in the liquid phase, and 
tend not to crystallize out when the semiconductor solidifies. The zone needs to move 
up and down the bar many times to get the required accuracy. In the end, the 
impurities are concentrated at either end of the bar. The material in the middle gets to 
the level of purity required. 
 
5.5 Semiconductor Properties 
We continue to use the nearly free electron model, but we may have both conduction 
band electrons and valence band holes contributing. The main difference from metals 
is in the temperature dependence of the number of carriers. 
 
1. Electrical Conductivity 
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It is customary to separate out the mobility (drift velocity / e-field) which shows the 
temperature dependence arising from collisions, as opposed to the effects of the 
changing number of carriers. (don’t confuse with chemical potential.) 
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! = e nµe + pµh( )  
It varies in a similar way to metals – decreasing at higher temperatures because of 
phonon collisions. 
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Assume that the mean free path,  ! , goes like T !1  in the phonon regime, so the mean 
collision time !  is 
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Conductivity increases as the temperature is raised, because the number of carriers 
increases, e.g. Si conductivity increases by 4 orders of magnitude between 500k and 
1000k. 

 
Mobility of doped Ge: 

 
 
2. Hall Effect 
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If there are appreciable numbers of both electrons and holes, the calculation is 
complicated by transverse currents with creation of electron-hole pairs at one side, 
and their annihilation at the other, together with a temperature gradient. 
See Hook and Hall, pp153-154. 
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