7. The Complete Problem

To model a star, we have four differential equations:

dm dP
o @
dl dT
dr dr

and three other functions:
e(P,T) p(P.T)

What are the boundary conditions?
Atcentre, r=0, m=0, /=0.
At surface, r=R,, m=M,, P—>0
But an atmosphere has no sharp edge.
Define the outer edge as optical depth 7 = % (t=x/):
T= JR* Kpdr
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Here T =T,.
Asr— R,
Gm(r) GM.
2 - R2 = 8o
which is a constant. Integrate the equation of hydrostatic equilibrium,
dP G
_ mz(r) pd}"
dr r

from infinity to R,.
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Other outer boundary conditions at r = R, :
T=T,

_ 2 4
L=4nR. oT,
7.1 Solving the Problem

Boundary conditions are split between the inner and outer boundaries. Two methods to
find a solution:



1. Shooting: start at r =0, guess P and T , integrate outwards, miss outer boundary
conditions. Tweak P and T at r =0 and try again. Difficult due to 7* and r*
in equations.

2. Henyey method (relaxation):

a. Estimate solution at all radii

b. Calculate by how much the estimate misses the solution.
c. Correct values at all points using these errors.

d. Iterate.

7.2 Basic Set

dm

— =dnur’

dr rp
dap _ GM (r)
dr r’
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—=4nr’pe
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P=nkT +P, +§aT4

K =K,p'T"
e=q,p"T" (172)

Equations are strongly non-linear. Equations 1 and 2 depend on 3 and 4 only if P isa
function of T .

7.3 Polytropic Equations of State

If P does not depend on 7 : can solve separately for hydrostatic structure (equations 1
and 2), and heat flow (2 and 3).

dm )
n =4nr-p
dP GM(r)
a e r
m(r)=—1_2°
pG dr
Insert into mass equation to find
i(—id—PJ =4nr’p (173)
dr\ pG dr
If P=Kp’
K d

ar ar

This is a simple second order differential equation: integrate to find the density profile.

(rzypy_z dpj = —47Gp (174)



Define
1
y=1+— (175)
n

where n is the polytropic index.
+1)K d > d
(n 2) S P = anGp (176)
nr  dr\ p"" dr
with boundary condition p=0 at R=R, and dp/dr=0 at r=0.

dP dP d
(Atr=0-m(r)=0—>5=0. P=kp’. S =xyp"" 2 = 0. The only thing here
dr dr dr

that can be 0 is dp/dr.)

Examples of polytropes: degenerate stars.
- Relativistic: n=3
- Non-relativistic: n=1.5

A polytrope is fully determined by K,n,R..

(Traditionally, things were defined as:
p=pw
r=0z
ol = 4”(2"'(1”)][; )
eGP,
(P=xp’
1

n=——
y—1
1 d d
——| 2 0y ®" =0 the Lane-Emden Equation.)
2 dz\ dz

(Chandrasekhar)

7.4 A Gaussian Model
Another way to simply model a star is to adopt some model for the pressure within the
star, to solve for (1,2) and (3,4) separately.

The equation of hydrostatic equilibrium is
dpP Gm(r)p(r)

T
At the centre of the star (r=0),
dP
oo ap _ 0
dr dr

The enclosed mass can be approximated as



m(r) =2 r'p, (177

where p_ is the central density. Therefore
dP 4r
—=——0Gp.r (178
o 5 6P (178)

As r— 0, dP/dr varies linearly with radius.

Near the surface of the star, p—0 and m — M. :

dpP GM.
——:———%KQ—»O(U%
dr r
Based on these arguments, Clayton (19867?) suggested a model with adopts a pressure

gradient of

2

dP 4 —%

—=——Gp,’re © (180

0 3 0P (180)
where a is some length parameter.

At the outer radius of the star R, take P =0. Integrate equation 180 to find
7'2 RZ
P(r)=?GPC2a2[€ < —e } (181)

To find the other parameters:
Mass: Integrate —47r°dP = Gm(r)dm

Density: integrate mass conservation equation
Temperature: the ideal gas equation.

For a/R <<1 (true for the sun: a=R_/5.4)

4mp.a*\6
)= 4o

M =m(R (182)

2
P.==5Gpla’ (183)
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7.5 Other Models
Eddington

14 L

—=n— (185)

m M
Assume energy generation in the core only: 1) increases inward. kK increases outward.
Assume

KN = const =K (186)

surface

This gives a polytrope of index n=3.



Point source model
All energy generation at » =0 . Still leads to complicated equations.

Such models are no longer required now that computer models can be designed.

7.6 Real Models
See diagrams in handouts.



