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Derivatives 
Consider a Lorentz scalar ! x( ) . ! ' x '( ) = ! x( ) . Through a 1st-order Taylor expansion, 
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!"  is a Lorentz scalar, !xµ  is a contravarient 4-vector, so 
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is a contravarient 4-vector, and 
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is a scalar operator. For example, 
 
!! = "µ"

µ! = 0  is the wave equation 

1

c
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!t 2
# $2" = 0 . 

 
1.1.1 Equation of Continuity 
Consider any charge density ! x( )  such that the charge within a volume !  is 

Q! = dv" x( )
!#  

is unchanged by a Lorentz transformation (i.e. it is a scalar). Then it can be shown 
that 

J
µ
x( ) = c!, j( )  

where j  is the associated current, j = !v , is a 4-vector. i.e. J µ
! J '

µ
= "

µ

#
J
#  under 

a Lorentz transformation. The charge is conserved provided that the equation of 
continuity 
 !µJ

µ
x( ) = 0  (1) 

is satisfied. This is an explicitly covariant equation. To se this, rewrite (1): 
!"

!t
+# $ j = 0  

Then 
!Q"

!t
=
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dv#
"$

= % & ' j dv
"$

= % j 'ds$

 

the last stage of which is using the Divergence Theorem. Hence the rate of increase of 
the charge enclosed = !  the rate of flow of the charge, i.e. the current / flux, through 
the surface. So no charge is created or destroyed. In particular, if ! , j ! 0  at ! , 
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!Q
!t

=
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dv" x( )# = 0 . 

 
1.1.2 Electromagnetic Field 
(Free space, !,µ = 0 ) 
Maxwell’s Equations (SI units): 
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In Rationalised Gaussian Units, µ
0
!
0
=
1

c
2

, so !
0
= 1 . Also redefine B  as 

B
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c
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Also introduce the fine structure constant, 
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e
2
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so to evaluate things with e , convert them to ! . 
 
Introduce the EM potentials !  and A  which satisfy 
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B = ! " A . 
These guarantee that equations (2) and (3) are automatically satisfied. 
 
If we write Aµ

x( ) = !,A( )  (5), then (1) and (4) can be combined and written as 
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so the Principle of Relativity requires Aµ
x( )  to be a 4-vector, i.e. 

A
µ
! A '

µ
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#
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# , as implied but not proven by (5). 


