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1.2 Some Quantum Mechanics 
1.2.1 The Interpretation of the Wave Function 
Before, used ! x,t( )d 3x = " x,t( )

2

d
3
x  to get the probability of finding a particle in 

volume d 3x  at x  at time t . (Assuming normalized ! .) This requires: 

1. ! x,t( ) = "
2

# 0  

2. For a single particle, ! x,t( )d 3x" = # x,t( )
2

d
3
x" = 1  at any time t , and 

hence 
!
!t

" x,t( )d 3x# =
!
!t

$ x,t( )
2

d
3
x# = 0  (1) to conserve probability. 

 
Hence we need to show: 

!"

!t
+# $ j = 0  

(Equation of continuity), where j  is a corresponding current density. 
 
Consider the Schrödinger Equation. 
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Taking its conjugate: 
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Multiply (1) by ! * , and then subtract (2) multiplied by ! . 
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i.e. 

 

!

!t
" *"( ) =

i!

2m
# $ " *#" %"#" *( )  

which is of the desired form, where ! x,t( ) = " x,t( )
2

# 0  and 

 

j =
i!

2m
!"! *#! *"!( ) . 

The continuity equation implies that 
!
!t

" x,t( )
2

d
3
x

all space# = 0  

So the conditions for the Born interpretation are satisfied. 
 
1.2.2 Minimal EM Interactions 
Point particle with mass m  and charge q  at position x  in an EM field !,A( ) . We 
want to know what the QM equation of motion for this particle is. 
 
Start from the classical Hamiltonian, 

H x, p( ) =
1

2m
p !

q

c
A

"
#$

%
&'
2

+ q(  (1) 

To verify this, check Hamilton’s Equations of Motion (using equations for many 
particles in places). 
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1. 
 

!xi =
!H
!pi

=
1

2m
2 pi "

q

c
Ai

#
$%

&
'(

 

i.e. the conjugate momentum 
 

pi = m!xi +
q

c
Ai , i.e. 

 

p = m !x +
q

c
A  (2) 

2. 
 

!p
i
= !

"H

"x
i

 (somewhat tricky derivation) 

 

m!!x = qE +
q

c
v ! B  

Note that (1) + (2) implies that the energy is 

 

H x, p( ) = E x, !x( ) =
1

2
m !x

2
+ q!  

Note that there is no contribution from the magnetic field, as it is at right angles to the 
particle and hence can’t do any work on it. 
 
Schrödinger Equation: 

 

H x, p̂( )! = i!
"!

"t
 

where 
 
p! p̂ = "i!#  (position operator is still x ). 
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which is related to the “free” equation 

 

!
!
2

2m
"2# = i!

$#

$t
 

by the minimal substitution 

 

!"! #
iq

!c
A  

 

!

!t
"

!

!t
+
iq

!
# . 

Or in 4D notation, 

 

!µ " !µ +
iq

!c
Aµ x( )  (3) 

(This combines the two substitutions before.) 
 
The same argument works in the relativistic case. 

H = cp ! qA( )
2

+ m
2
c
4
+ q"  

Hence the “Schrödinger equation” is 

 

!!2c2 " !
iq

!c
A

#
$%

&
'(
2

+ m
2
c
4

#

$
%
%

&

'
(
(
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Again this is obtained from the free particle case by (3). Note that in the non-EM 
case, the first bit would form p

2
c
2
+ m

2
c
4 . 
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Problem:- how do we interpret , or in the free case 
 
!!

2
c
2
"
2
+ m

2
c
4  ? 

We will come to this later. 
 
1.3 Natural Units 
Use natural units, such that  ! = c = 1 . So the unit of speed is the speed of light, and 
the unit of momentum is  ! . 
 
It’s easy to put this in; the tricky bit is to get back to ordinary units. So use 
dimensions to restore  ! , c , and then use 

 ! = 6.582 !10
"22
MeV !sec  

 
!c = 1.973!10

"13
MeV m . 

 
(See Martin & Shaw PP, section 1.5) 
 
2. The Klein-Gorden Equation 
Using free space, so !,A( ) = 0 , and natural units. So the Schrödinger Equation is 

H! x,t( ) = i
"! x,t( )

"t
 (1) 

where !  is now the wave function, and H = !"
2

+ m
2  (2). What does this mean? 

In the Klein-Gordon (KG) equation, we avoid the problem by noting that H  is 
independent of t , so we can multiply the equation by H  again. 

H
2! x,t( ) = i

"

"t
H! = #

"2!

"t 2
 

then using H 2
= !"

2

+ m
2 , 

!2

!t 2
" #2

+ m
2

$
%&

'
()
* x,t( ) = 0  (3a) 

 
!+m

2( )! x,t( ) = 0  (3b) 

where 
 
!= !µ!

µ . This is called the Klein-Gordon Equation. This is the correct 
equation, but what is its interpretation? 
 
There are a whole series of problems. 
 
2.1 Negative Energies 
KG equation has solutions 

! x,t( ) = e
i p"x#Et( )  

with E2 = p
2

+ m
2 , i.e. with energies E = + p

2

+ m
2
! m

2
> 0 , and 

E = ! p
2
+ m

2
" m

2
< 0 . 

So we have a spectrum of energies available at E > mc
2  and E < !mc

2 , with an 
energy gap in the middle. Classical particles can’t jump this energy gap. Quantum 
mechanics say that interaction can cause quantum jumps releasing or absorbing 
quanta  !! " 2mc

2 , either as radiation or as other particles. 
So a particle can fall to negative energy states etc. releasing an infinite amount of 
energy. What stops it? 


