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Dust: An Overview 

• Observations: extinction, reddening, (infra-red) features, polarization. 
• Models: size distribution, composition, efficiencies 
• Source of dust: Asymptotic Giant Branch (AGB) stars, Wolf-Reyat (?) (WR) 

stars, novae, SN, cool dwarfs 
• Processing: accretion/spluttering, irradiation, collisions 
• Dust and Chemistry: surface processes, reactions 
• Formation and Destruction processes 
• Dust in Protoplanetary Systems 

 
Classical (optical, early 20th century) observations: Extinction 

• Makes stars appear fainter (more distant) than they are 
• Damaged some early 20th century surveys (e.g. Kapteyn’s) 
• Extinction is the sum of absorption and scattering 

Qext =Qabs +Qscat  
Absorption involves the destruction of the photon, so there is an increase in 
the energy of the grain, while scattering just redirects the photon. 

• Usually measured in magnitudes: continuum effect – extinction across the 
whole of the optical spectrum, and into the UV and IR. 

• Patchy: largest extinctions near Galactic plane 
• Association with young (Popular 1: O and proto-) stellar objects 

 
Classical observations: Reddening 

• Extinction varies with wavelength: blue light is more extincted than red. 

• Often expressed as R =
A
v
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Bottom is the excess of blue compared to violet light. 
• R  is typically 3.1 in the Milky Way. 
• Some dependence on direction, e.g. towards the bulge. 
• Lower R  implies smaller grain populations. 

• Plot 
E ! "V( )
E B "V( )

 (the excess at a particular wavelength) to get the “Reddening 

Law”. 
• Don’t extend classical formulae to IR colours or dark clouds. 

 
Contributions to Reddening Law 

• Different species have characteristic extinction behaviour 
• Observed reddening law allows us to identify species responsible. Note that 

electrons have been included as a control. 
Mie scattering is a more complicated case – there is contribution from many 
different poles, rather than just the usual dipole. 
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• Most heavy elements must be in grains, rather than in the gas phase, to get 

observed extinctions – unless the grains have an extremely fractal structure, so 
that you get a large area for comparatively little mass. 

 
Classical Observations: Polarization 

• Spherical grains will not display polarization; hence as we observe a lot of 
polarization, they must be aspherical. 

• Aspherical charged grains align with B  field; they align so that the B field 
goes through the least amount of matter (i.e. vertical field, long axis of 
molecule will be horizontal) 

• Grains rotate: short axis parallel to B . 
• Strong polarization if line of sight is perpendicular to B . 
• Weak, random polarization if the line of sign is parallel to B . 

• Spin-up time ! spin ~
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 is the grain thermal velocity; !  is the mineral density. 
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Modern Observations (looking in non-optical regions of the spectrum) 

• Radio, mm and sub-mm (only in the last few decades, in places such as the 
Rayleign telescope in Hawaii): Rayleigh Law continuum 

• Cold dust observations in supernovae (SCUBA, JCMT) – odd because most of 
a supernova will be very hot, but the ejecta can be very cold. 

• Infra-Red: many molecular line-like features, which are important as they tell 
you what is in / on the grain. 

• Features correspond to bond vibrations: no rotation in lattices 
• Give information about mineral content of grains 
• Problem: features are broader than molecular equivalents: lattice. 

 
Grain Models 

• Often assume spherical grains, radius a  
• A size spectrum is assumed: often a power-law 

e.g. dn a( ) = Kn
H
a
!
da  

K  is a normalization constant; n
H

 is the number density of hydrogen nuclei. 
• A well-used value for !  is !3.5 , from MRN (a classic dust-modelling paper) 
• The size spectrum can be used to compute other quantities. 



 
Total Mass in Grains 

• Mass density of grains m =
4
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Mean Grain Radius 
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• Use size spectrum: a =
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• A typical mean radius is 0.05 microns. 
 
Efficiencies, Q 

• Generally obtained from Mie Theory: complicated. 

• If x = 2! a
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, Rayleigh limit forms are: 
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NB: !  means take the real component 
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NB: Im  means take the Imaginary component. 
• n  is the complex refractive index, n = n '! in '' . The minus sign is a convention 

to make the math easier. 
• Note: dielectric constant is often used instead of the refractive index: 
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Points to Note: 

• As x!" , Qabs  and Q
scat
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BUT: Q
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! 2 : diffraction pattern. 

• Optical efficiency for radiation pressure has Q
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• Effect on wave: A = A
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• Note: real part of n gives refraction; imaginary part gives absorption. 
 
Absorption (Scattering) Coefficient 

• Absorbing area per unit volume: ! "( ) = #a2Q a,"( )n a( )  
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• Evaluation requires full knowledge of size-dependence of Q . 
 
Greenberg’s Composite Model 

• Attempts to match extinction law AND polarization 
• Three dust components: 

i. PAHs for rise in far UV extinction 
ii. Small carbonaceous grains for ‘UV bump’ 
iii. Larger (carbonaceous-)coated silicates (cores) for polarization and 

optical extinction. These can also have an ice mantel, which can also 
turn into (ii). 

• Fragments of coating of (iii) form component (ii). 
• Number density of (iii): 
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for core radius a

c
 and turn-over radius a

m
. 

 
Greenberg or “gobstopper’ model 

1. Starts off with a silicate core from CSE. 
Cooling in diffuse clouds  2 

2. Mantle formed by accretion of simple molecules. 
Cooling in molecular clouds  3 



3. Outer mantle of ices forms. 
Protostellar collapse  destruction? Growth to form comets, planitessimals? 
Ejection to hot or warm ISM  4 

4. Tough mantle of refractory organic material. 
UV processing of mantle  2 (on top of previous layers). 

• Track through ISM is important for layer sequence. 
• Needs Mie theory for multiple coatings. 

 
Sources of Grains 
Estimated stellar / explosive contributions: 

• O-rich AGB stars: 
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2 !10

"4
M
!
pc

"2
Gyr

"1 ; mostly C 
(each star forms a lot, but they’re rare objects) 

• Novae: 
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(NB: they probably destroy a comparable amount of grains as well) 


