PC4771 — Gravitation — Lectures 13 & 14

4.4 Geodesic Deviation
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There are four possible second derivatives:
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Of course, r_4x as the derivatives wrt s and t commute.

dsdt — drds
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This means that it doesn’t matter which way around the loop you go.

Now consider
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(T“VaT “) is zero for an affinely parameterized geodesic.

> (T“Va)(T by B)S" =RY ,T°T"S P along an affinely parameterized geodesic.

Consider two particles A and B moving along geodesics parameterized by ¢ . If dx"

u
is the difference between them i.e. S* (: ddi&vj = 0x", then
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This is the equation of geodesic deviation.

5. Einstein Equations
5.1 Energy-Momentum Tensor

Consider the tensor T"" = ( p+ P)U *U" — Pn"", and assume that it is conserved,

where:s
- p is density
- P is pressure
- U" =y(1,v) of special relativity

9,T* =9,[(p+P)U* |- U"+(p+P)U*3,U" - 9"'P
In the non-relativistic limit:

1. U"‘=(1,vi)+0(v2)

2. p>>P

3. vP<<|VP

, S0 pressure gradients dominate.

Consider v=0 and v =i as separate cases.

v=0:

d,[(p+P)JU*-P=0

2 p+pV-v=0(1)

This is the energy conservation / continuity equation.



V=i:

(0,(p+ P)U*)V' +(p+P)(Vd,')-0'P=0

Substitute the continuity equation into this, and the first term drops out, leaving
p[\'/i + v"ajv"] =0’P

> p(%ﬂz-i)y) =-VP (2)

This is the momentum conservation, aka Newton’s second law.
These two equations are the equations of fluid dynamics.

T" is the energy-momentum tensor for a perfect fluid. In general,

T® is the energy gdensity.
T and T is the momentum flux.
Down the diagonal part of T? is the pressure.

Off the diagonal of T is the stress, or anisotropic pressure.
Another example is electromagnetism.
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(See 1.4.6)
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where F~ =FF,;.

1 .
T, = —(EZ + Ez) - energy density
8

T, = 4—(E X B) - Poynting Vector (momentum flux of the electromagnetic field)
/4

If we take 0, 7*" =0, then we get the Maxwell equations in ElectroDynamics.

In special relativity, energy and momentum conservation are given by 0“T,, =0.
InGR, V*T,, =0 and T =(p+ P)U"U" — Pg"" for a perfect fluid.

The energy momentum tensor will play the role of a generalized concept of mass.
For a perfect fluid, the Weak Energy Condition implies that p >0 and p+ P >0.
Also, the Strong Energy Condition implies that p+3P >0.

5.2 SEP (Strong Equivalence Principle), Einstein Tensor & Einstein Equations



Newtonian gravity
¢ = gravitational potential (“if you know this, you know everything”)

F = —V¢ = gravitational force

V’¢ = 4G p =Poisson equation — links ¢ to p. (c.f. electomagnetism).

Gravitational force can be set to zero at some point = existence of freely falling

frames. But tidal gravitational forces L = : cannot be removed (see examples
x;  dxdx;

1, question 7). [Example of tidal gravitational forces: the effect of the moon on the

ocean, i.e. tides]

Recall SEP

Coordinates in a lift are x", coordinates relative to the ground are x'" .
21

SEP -> the observer in the lift experiences special relativity - dx =0 (2)and
T
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Consider the coordinate transformation.
dx" = J* dx"
dx" dx"

= JH
dt " dt
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Hence equation 1 becomes n_,J* J
4 B n dt dt

If we define g, = J“ujﬁvnaﬁ then:
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Hence equation 2 becomes:
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From the point of view of an observer on the ground, the equation of motion is the
geodesic equation.
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Hence

— our new theory of gravity will replace ¢ with g, and F=-V¢ with
X+ r“aﬁx“xﬁ —> test particles and light rays will move on geodesics.

And the Poisson equation will be replaced by the Einstein Equation.



Note: we have already shown that in a LIF T'* ; can be set to zero at a point, but that

0 ,1*,s cannot. This is equivalent to removing the gravitational force at that point, but

not the tidal fields. It hints that tidal fields are encoded in the derivative of
apl““aﬂ ~ R“paﬁ.

One cannot derive the Einstein Equation. It is a particular choice which works in
practice. It fulfils various simple criteria.
1. It relates the metric, plus first and second derivatives, to the energy-
momentum tensor.

> G(g#v,agﬂv,azg#v) =T

2. It must be coordinate-independent.
—> it must be tensorial.

3. Energy-Momentum has to be conserved.
2>V, =0

4. It should become the Poisson equation in the non-relativistic limit. (see 5.3)

(1) and (2) imply that G = G(g,,.R

uv?

R.R,.,)

(3) 2 if G,, =8nGT,,, where G is the gravitational constant, then V*G,, =0,

1 . . .
Therefore G,, =R, — 5 g, R 1s a suitable choice.

. 1
= Einstein Equation: G, = R, — 5 g,,R=8nGT,,



