
PC4771 – Gravitation – Lectures 13 & 14 
 
4.4 Geodesic Deviation 
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There are four possible second derivatives: 
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This means that it doesn’t matter which way around the loop you go. 
 
Now consider 
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Consider two particles A and B moving along geodesics parameterized by t . If !xµ  
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This is the equation of geodesic deviation. 
 
5. Einstein Equations 
5.1 Energy-Momentum Tensor 
Consider the tensor T µ! = " + P( )U µ

U
! # P$µ! , and assume that it is conserved, 

where:s 
- !  is density 
- P  is pressure 
- U

µ = ! 1,v( )  of special relativity  
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In the non-relativistic limit: 
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v !P << !P , so pressure gradients dominate. 

 
Consider ! = 0  and ! = i  as separate cases. 
 
v = 0 : 

 
!µ " + P( )#$ %&U

µ ' !P = 0  
 

 
!! + !" #$ = 0  (1) 

This is the energy conservation / continuity equation. 
 



! = i : 

 
!µ " + P( )U µ( )# i + " + P( ) !# i!

j
v
i( ) $ ! j

P = 0  
Substitute the continuity equation into this, and the first term drops out, leaving 
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This is the momentum conservation, aka Newton’s second law. 
 
These two equations are the equations of fluid dynamics. 
 
T

µ!  is the energy-momentum tensor for a perfect fluid. In general, 
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T
00  is the energy gdensity. 

T
i0  and T 0i  is the momentum flux. 

Down the diagonal part of T ij  is the pressure. 
Off the diagonal of T ij  is the stress, or anisotropic pressure. 
Another example is electromagnetism. 
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(See 1.4.6) 
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where F2
= F!"F!" . 
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If we take !µT

µ"
= 0 , then we get the Maxwell equations in ElectroDynamics. 

 
In special relativity, energy and momentum conservation are given by !µ

Tµ" = 0 . 

In GR, !µ
Tµ" = 0  and T µ! = " + P( )U µ

U
! # Pgµ!  for a perfect fluid. 

 
The energy momentum tensor will play the role of a generalized concept of mass. 
For a perfect fluid, the Weak Energy Condition implies that ! > 0  and ! + P > 0 . 
Also, the Strong Energy Condition implies that ! + 3P > 0 . 
 
5.2 SEP (Strong Equivalence Principle), Einstein Tensor & Einstein Equations 



Newtonian gravity 
! " gravitational potential (“if you know this, you know everything”) 
F = !"# $ gravitational force 
!
2

" = 4#G$ % Poisson equation – links !  to ! . (c.f. electomagnetism). 
Gravitational force can be set to zero at some point  existence of freely falling 

frames. But tidal gravitational forces !Fi
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1, question 7). [Example of tidal gravitational forces: the effect of the moon on the 
ocean, i.e. tides] 
 
Recall SEP 
Coordinates in a lift are xµ , coordinates relative to the ground are x 'µ . 

SEP  the observer in the lift experiences special relativity - 
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Consider the coordinate transformation. 
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Hence equation 2 becomes: 
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From the point of view of an observer on the ground, the equation of motion is the 
geodesic equation. 
 
 our new theory of gravity will replace !  with gµ!  and F = !"#  with 
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And the Poisson equation will be replaced by the Einstein Equation. 



 
Note: we have already shown that in a LIF !µ

"#  can be set to zero at a point, but that 
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not the tidal fields. It hints that tidal fields are encoded in the derivative of 
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One cannot derive the Einstein Equation. It is a particular choice which works in 
practice. It fulfils various simple criteria. 

1. It relates the metric, plus first and second derivatives, to the energy-
momentum tensor. 
 
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2. It must be coordinate-independent. 
 it must be tensorial. 

3. Energy-Momentum has to be conserved. 
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4. It should become the Poisson equation in the non-relativistic limit. (see 5.3) 
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