PC4771 — Gravitation — Lectures 15 & 16

Einstein’s Equation:
1 A
G,=R, - EgWR =8rnGT,,

where G, is the Einstein Tensor, and G is the Newtonian constant.

Note:

1. The equation is non-linear in the metric, which we should expect since there
are no neutral observers = no superposition of sources as in Maxwell’s EM
equations (methods used in EM (like method of images) would work in
gravity because the equations aren’t linear).

2. Alternative:

1 .
G=g"G, =R- Eg“vg#vR =—R=8nGT

where G is the Newtonian constant, and T = g"'T,, .

G 1is the scalar associated with the Einstein tensor (and Newton’s constant)
A 1
2R, = 872?G(Tuv — Eg“vTj

3. The addition of a term Ag,, is compatible with our criteria, where A is a

constant. A represents vacuum energy, and is known as the cosmological
constant. We will return to this in section 7.

Einstein called A his greatest blunder, but cosmological observations suggest
that it is non-zero (but very small).

5.3 Newtonian Limit
Consider the line element

ds® = e*dt* — dx’
with ¢ = ¢(x) << 1. This ¢ will represent the gravitational potential. The Einstein
equations become the Poisson equations in this Newtonian space.
2> L, = it — i’
oL dL

—L =2¢7; —L=0> =0
of dt
dL,, dL,, .
P = 2%; —L =29 pe™f’
ox ox

> §+9.0e®i* =0
' =0 ¢e*, I'=0 otherwise

For ¢ <<1,
¥ 0'x
—=—=-00¢=-V
i o # ¢

- Newtonian equations of motion for test particle.
Now consider

Ruv = Rpﬂpv = aprpuv - avrpup + Fpnvryﬂv - prryup
Use T, =0,0+V(¢’) > T ~p—>T ~¢” (very small)

Therefore only need to calculate the first two terms.
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Ruv = aprpﬂv - avrp#p
= at I:ﬂ,‘ - avl—‘x,uv - av Eﬂ - av Fx,ux

=0 =0 =0

Therefore R, =9d.I"",, (only non-zero part).
d.° v=tt
R y — X ¢ ILL
: 0  otherwise
Hence R, =V?¢

Now consider
T,=(P+p)UJU,-Pg,,
1
-2(P-p)s,
In the non-relativistic limit, u, = (1,2) and p<< P

1
Tuv - EguvT = Uva(P+ p)

1
> R, =V¢= 87rG(T” - EgnT) =47Gp

GM
Poisson equation V?¢ =47Gp, hence ¢ = ———.
r

5.4 Gravitational Radiation
Consider a metric with a small perturbation from Minkowski spacetime.

8 =N +Eh, (£<<1)
created by a matter distribution €7, .

Since g"'g,, = 6?0(82), we must have that
g =n" — eht

hence,

T, = %e(—a“haﬁ +0,hy" +9,h," ) +0(e”)
and

Ruv = Rpupv

=0,I",,—0,I", +0(&)
1
= Eg(—uhﬂv +9,(9,h°,)+2,(9,1",)-0,9,h)+0(¢*)

where 0=0,0” and h=h",

Now consider the effect of a coordinate transformation.
x'"=x" + ekt

> J" =6 +ed,E" and JY =8 — 9, &' +0(&?)
Ifn',
M + €'y = J0TE (N + €N ) =1, +€(hy, —9,E,-0,E,)+0(€)

—> physical processes should be invariant under the “gauge transformation”

h',uv = huv - a,uév - avéﬂ .

is the metric perturbation in the new coordinate system, then
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(cf. A',=A,+V, ¢ inED)

1 1
Consider 0“h',,——d,h'=0d"h,, ——0d h-0E,
2 2
1
- by a gauge transformation we can set 9“h',,— Eavh‘ =0 if we choose
1
Dév = a”hﬂv - Eavh

1
Hence, we can always choose the de-Donder gauge where 9“h,, = Eavh . Note that
this is similar to the choice of the Lorentz gauge in EM.
1 1
> R,uv = _Egl:‘hl“’ _>Dh;w = —167TG(T#V — Eg#VT)

This is the wave equation for the generation and propagation of gravitational waves. It
is very similar to that for dipole EM radiation.
Consider free wave-like solutions with 7, =0, i.e. oh,, =0.

. _ ikx
Solutions A, =¢,e

. o o
e,, 1s the polarization tensor. kx =k, x".

oh,, =0 2 k,k"=0 ie. k isnull.
1 1
d“h,, — Eavh =0 > p, k"= Ekve“ﬂ (*)

e,, has 10 degrees of freedom (4x4 symmetric tensor), but * is 4 equations = only 6

degrees of freedom (maximum).

Moreover, for a wave of the form e, , a further gauge transformation can be made, in

uv o

ik-x

. o . . . . . . *
this form: e',, =e,, +a k, +a k, using £ =ia,e™™, in which ¢, is arbitrary and

is unchanged.
Since ¢, is a 4-vector, this removes 4 degrees of freedom. = 2 degrees of freedom

for free gravitational waves, i.e. two polarization states.
Consider an x-directed wave kK’ =k'=k, k> =k> =0, then

0l 0
o
— ik-x
hllv - 0 i h’ hx €
:hx h,
h,, =h,etm,+hxe"#v
0l 0 0l 0
where ¢/, =| 11 0] ¢, =/ 10 1
0 -1 10

In contrast to EM radiation, gravitational radiation is generated by the mass

1
, where I, = Je(xixj - §6i,)_czjd3x is the quadrapole

I

G\
quadropole: Power P = S
of the matter distribution p(x).

Section 6 - Schwartzchild solution
6.1 - Spherically Symmetric Vacuum Solution
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Vacuum > 7, =0 > R, =0 except at one point.

Spherically symmetric with area of the 2-sphere 47r”.
> ds’ = A(r,T)dT* = 2B(r,T)dTdr - C(r,T)dr’* - r*(d6” +sin’ 6d¢’ )

Consider a change of timescale 7 =T (t,r)

9deTdt+T‘dr,WhereT:a—T nd T'= or
ot or

Therefore

ds® = AT” + 2T (AT = B)dedr —(C + 2BT '— AT *)dr’ — r* (d6” + sin’ 6d¢’ )
If we choose AT'= B and set coefficient of dr’> = """ , and coefficient of
dr* == > most general spherically symmetric metric, i.e.

ds® = ev(”)dt2 — M gr? = p? (d92 +sin’ ad¢2)

> 8w = a’iag(ev,—el,—rz,—r2 sin’ (x)

1 1
=diag| e, e, ——,—
r* risin‘ o

To compute the Christoffel symbols, use

2
L= (j—sj =e'i* — et =17 (92 +sin’ ocq32)

T
For t:
oL . . oL, )
f—‘;ff — 2€vt : eff — @evtz _%ell/-_z
ot ot ot ot
1 104
>l Py L sy
20t Or 2 ot
r,n:l@;r,n 1oy T _1 ,“82,
2 ot 2 ar 2 ot

Similarly for (r), (6) and (¢ ).
Then compute R, =R" =0, I" —d,I°" +I”T7, —T? T7, . fromwhichwe
can derive:

R, =lev_)“(v"+lv'(v'—), )+2—Vj+l( /1)—1)1
2 2 r 2
Rtr zi
2r
R, =lev_l():—li(\)—i))—l(v'%lv'(v‘—l')—%)
2 2 2 2 r
Ry =1—e—*(1+%r(v'—ﬂx))
R,, =sin’ OR,,



