
PC4771 – Gravitation – Lectures 3&4 
 
Einstein lift experiment. Observer O  in a lift, with light L

1
 going vertically down, L

2
 

going horizontal. Observer O '  outside the lift. Cut the lift wire – lift accelerates wrt 
O '  

Time taken for photons emitted by L  to reach O  is 
 

!t =
!!

c
. Standard choice of 

units: set c = 1 . Now cut the wire. 
 
A. Consider the light emitted by L

1
 

The lift is in a freely-falling frame (fff) – which means that O  experiences special 
relativity, i.e. since the EEP holds it is also LIF (Locally Inertial Frame). Therefore no 
change in frequency is observed by O . However, O '  will see the lift moving with 
speed 

 
!u = g!t = g!! . So the Doppler shift formula for small speeds (for small !u ) 

implies that there is a change in frequency 

 

! f

f
= !u = g!! . 

If 
 

g = !
"#

"!
, i.e. the gravitational force is the gradient of the gravitational potential, 

then 
! f

f
= "!# . 

This is known as the Gravitational Redshift Formula. 
 
B. Now consider the light emitted by L
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EEP  lift is in LIF. The coordinates of the light in the lift are 

 
x
!
, y
!( ) = t,d( ) , 

i.e. O  sees a straight line. 
Coordinates relative to O '  on the ground will be 
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So the view from the ground is that the photon has a parabolic (i.e. curved) path. But 
Fermat’s principle asserts that the light must take the shortest path between two points 
– i.e. it extremises 

S =
ds

dx
dx

x
1

x
2

! , 

where ds = d! , the proper time. 
 
In Minkowski space, the geodesics (i.e. the paths which extremise S ) are straight 
lines. So one must either drop: 

1. Fermat’s Principle 
2. Minkowski space-time 



1.6 Einsteinian Vision of GR 
Einstein’s choice is to drop Minkowski space-time. He states: 
 
1. Space-time is a psudo-Riemanian manifold with a position dependant metric. 
 the internal of special relativity is given by ds2 = gµ! x

µ( )dxµ
dx

!  
We will always be able to choose coordinates to make space locally flat, so geodesics 
are locally straight lines. Only when you talk about very large distances do you see 
this curvature. 
We can classify geodesics as time-like ds2 > 0  (particles), null ds2 = 0  (light) or 
space-like ds2 < 0  (superluminal particles, which generally do not exist). 
 
2. Energy-momentum (and hence mass) is what defines the curvature of space-time 
globally. 
 
2. Manifolds & Metrics 
2.1 Manifolds 
Basic idea is that a manifold is a set of pieces which “look like” open subsets of Rn , 
but which can be “sewn together” smoothly. 
e.g. the maps of the earth analogy – maps of local areas will be R2 , which are locally 
flat but which can be “sewn together” to make a map of the whole planet (which will 
be R3 ). 
 
Examples: 

1. R
n : R1  is a line, R2  is a plane, etc. 

2. S
n : S1  is a circle, S2  sphere, etc. 

 
2.2 Curves and Surfaces 
e.g. S1  in R2  (a curve), S2  in R3  (a surface). 
 
Parametric 
A curve is defined by a single parameter u  and coordinates within the manifold are 
X

µ = X µ
u( )  where u = 1,...,n  (where n  is the dimension of the manifold). 

 
E.g. S1  in R2 : 
x = cos!  
y = sin!  
!  is the parameter. 
 
A surface is an m -dimensional sub-manifold defined by m  parameters u

1
,...,u

m
. The 

coordinates are X µ = X µ
u
1
,...,u

m( ) . 
x = sin! cos"  
y = sin! sin"  
z = cos!  
!  and !  are the parameters. 
 
If m = n !1 then the surface is called a “hypersurface”. 



Constraints 
By eliminating the parameters an m -dimensional surface can be defined in terms of 
n ! m  constraints. 
f ' x

1
,..., x

n( ) = 0  
… 
f
n!m( )

x
1
,..., x

n( ) = 0  

e.g. S1  in R2 : x2 + y2 = 1 
       S2  in R3 : x2 + y2 + z2 = 1 
 
2.3 Coordinate Transformations 
Consider some coordinates X 'µ = X 'µ x

1
,..., x

n( )  

dx '
µ
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This is by the chain rule. 
Define the Jacobeans: 
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Then: 
dx '

µ
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Define the Kroenecker Delta ! µ
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Then J!
µ
J '"

!
=
#x 'µ

#x!
#x!
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=
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= $ µ

! . 

i.e. J  and J '  are inverses of each other: JJ ' = I . 
 
e.g. R2 : 
x
1
, x

2( ) = x, y( )  

x '
1
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x = r cos!  
y = r sin!  

tan! =
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2.4 Metric & Line Element 
ds

2
= gµ!dx

µ
dx

!
= g 'µ! dx '

µ
dx '

!  
µ = 0,1,2,3  
Implicitly throughout the course, assume gµ! = gµ! x

µ( ) , i.e. depends on position. 

gµ!  is the metric, ds2  is the line element. 
NB: by this definition gµ!  is symmetric. 
 
Under coordinate transformations, dxµ

= J
!

µ
dx '

!  and dx 'µ = J '
!

µ
dx

!  
 ds2 = gµ!J"

µ
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"
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µ
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#
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Or in index notations, g ' = JgJT  
e.g. 2D Euclidian to plane polars: 

2D Euclidian ds2 = dx2 + dy2   g =
1 0
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 ds2 = dr2 + r2d! 2  
 
(Simpler way for this case: 
x = r cos!   dx = dr cos! " r sin!d!  
y = r sin!   dy = dr sin! + r cos!d!  
dx

2
+ dy

2
= dr

2
+ r

2
d!

2 ) 
 
What does the metric mean? It defines the measure of distances within the manifold. 
e.g. ds2 = a2 t( ) dx2 + dy2!" #$  which governs the expansion of a 2D universe. 
 
Define gµ!  as the inverse of the metric, such that gµ!g

!"
= #µ

" , or in matrix 

representation gg!1
= I . 

e.g. in plane polars 
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Note that we have assumed that the determinant det gµ!( ) " 0 . 
 
Consider the line element between two points P  with coordinates xµ  and Q  with 
coordinates xµ

+ dx
µ . 
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g  is a symmetric matrix at each point in the manifold. At each point, the matrix g  
can be diagonalised. Note that this cannot be done globally in general. 
g = P

T
!P  

where P  is the rotation matrix (PPT
= I ) and !  is the diagonal matrix 

 ds2 = dxTPT
!Pdx = Pdx( )

T

!Pdx  

Redefine du = Pdx  then ds2 = duT!du  
Moreover, one can rescale coordinates 

u!"u , ! =
1

"
i

 

 g = diag 1,...,1,!1,...,!1,0,...,0( )  
 locally spacetime is flat. 
If s  is the number of +1’s, and t  is the number of !1’s, then s ! t  is known as the 
signature of the metric, and s + t  is its rank. 
If t = 0 , the metric is Euclidean or Riemannian. 
If s = 1 , the metric is Lorentzian or pseudo-Riemannian. 
 
ds

2
= dx

2
+ dy

2  is Riemannian. 
ds

2
= dt

2
! dx

2  is Pseudo-Riemannian. 
 
General Relativity is concerned with Pseudo-Riemannian spaces. 
 
(NB: if u = Px , then if P x( )  du ! Pdx , which reiterates the earlier point that this 
procedure can only be done locally.) 
 
Consider the sphere. 
x = sin! cos!  
y = sin! sin"  
z = cos!  
So ds2 = d! 2 + sin2!d" 2 . 
Look at a line encircling the north pole, ! = !

0
. 

Let us compute the radius, circumference and area of the “circle” ! = !
0
. 



Along the radius, d! = 0  so ds = d! . So the radius is r = ds
!=0

!=!
0

" = !
0
. 

Along the circumference d! = 0 , so ds = sin!
0
d" . So the circumference is 

C = ds
!=0

!=2"

# = 2" sin$
0
. 

Now consider the infinitesimal area element dA = d! sin!d" . The area is hence 

A = d! d" sin"
0
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#
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Hence C
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=
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2
, i.e. they are not equal to 1 as they 

would in Euclidean space. 
 

NB: 
C

2!R
" 1 and 

A

!R
2
" 1  as !

0
" 0 . This is a consequence of the space being 

locally flat. 


