
PC4771 – Gravitation – Lectures 7 & 8 
 
3. Connection & Tensor Calculus 
3.1 Covarient Differentiation & Torsion 
Notation: 

!µ =
!

!x
µ

; ! 'µ =
!

!x '
µ

 

!
µ
=

!

!xµ

; ! 'µ = !

!x 'µ

 

This will denote ordinary partial differentiation. 
 
If !  is a scalar, then: 
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This implies that !µ"  is a covector, and similarly !µ"  is a vector. 
 
Now compute the partial derivative of a covector 
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In each case the first term is what one would expect of !µA"
 and !µA

"  were tensors 

of type 
2

0( )  and 
1

1( )  respectively. 
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 !µA"
 and !µA

"  are not tensors! 
 
Consider two points P  and Q  with coordinates xµ  and xµ

+!x
µ  respectively, and a 

vector A!
x( )  defined along the curve joining them. 

From Taylor’s Theorem: 
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x( ) , which is the difference 
between tensors defined at two distinct points on the manifold.  
 
Under a coordinate transformation: 
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 clearly A!
x +"x( )# A!

x( )  is not a vector defined at P. 
 
In order to define a tensorial derivative we must compare vectors at the same point in 
the manifold. Hence we introduce the concept of parallel transport via !A

µ

. 

 
The vector A!  evaluated at Q  is A!
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"
= #$"

%&A
&!x% , and !"
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effects of parallel transport. 
Now we define the covariant derivative to be: 
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We demand that : 

1. !µA
"  is a tensor of type 

1

1( )  

2. Linearity: !µ "A# $ %B#( ) ="!µA
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3. Liebnitz rule holds: 
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Consider ! = A"B

"  to be a scalar for all vectors B! . 
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Similarly, one can deduce: 
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for a tensor of type 
b

a( ) . 
e.g.: 
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Since we have demanded the covariant differentiation is tensorial, we can deduce a 
transformation law for !"#

µ . 
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Hence we have 
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A connection which satisfies this transformation law is known as an affine 
connection. 
 
Note: 
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 T!"
µ  is a tensor. 



If T!"
µ
= 0  in one frame then it is so in all frames, and the connection 

symmetric and said to be torsion free. 
 
3.2 Affine Geodesics 

Consider a curve parameterized by u  with tangent vector T µ
=
dx
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du
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Therefore, the curve between P  and Q  is an affine geodesic if: 
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 the affine geodesic equation can be written as 
T

!
"

!
T

µ
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It is said to be affinely parameterized if ! = 0 . Then u  is an affine parameter. 
 
Let us now generalize this concept to an arbitrary vector. If Aµ  is a vector then it is 

parallelly transported along the curve if T !
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 the value of Aµ
u( )  is the solution of the above differential equation along the 

curve with initial conditions Aµ
0( ) . 

 
Consider the inner product of d T ,A( )  of a parallelly transported vector Aµ  along 
some curve which is affinely parameterized. 
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The second term is 0 because it is geodesic, while the third term is 0 because it is 
parallelly transported. 
 the inner product (i.e. norms and angles) is preserved along a geodesic if the metric 
is covariently conserved, i.e. !"g#$ = 0 . 
 
Note that parallel propagation is path dependent. 
e.g. take a sphere. Consider two points P and Q on the equator, with R being the north 
pole. The points P and Q are separated by some angle ! , and can be individually 
joined to R along the surface by a “great circle”. 
PQR is pointing upwards at P, upwards at Q, and horizontally backwards (1) at R. 
PR is pointing upwards at P, and at an angle (2) at R. 
The angle between (1) and (2) is ! . 


