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2. Densities in Coordinate Space 
P R( ) =W R,R( ) = the probability density of the 3N -dimensional configuration R . 
 
Bosons 
These are particles with spin 0,1,2,3,...  . 
The wavefunction 
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i.e. the many-body wavefunction of identical bosons is symmetric, or ‘even’, under 
the interchange of any two particles. 
 
Fermions 
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i.e. the many-body wavefunction of identical fermions is antisymmetric, or ‘odd’, 
under the interchange of any two particles. 
 
For both fermionic and bosonic many-body systems, the probability density 
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is always symmetric (i.e. even) under interchange of any two particles. So the total 
probability density 
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is always symmetric under the interchange of particles. 
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So P R( )  does not change under interchange of any number of particles (in any order) 
because any permutation r
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N( )  may be obtained as a succession of 
interchanges of two particles. 
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2.1 The One-Body Density 
The one-body density operator is given by !̂ x( ) . x = x, y, z( )  is any position in 3D 
space in the volume V  that is occupied by the many-body system. 
 
If particles were rigidly fixed to their places r
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, then the classical density 

!
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x( )  would be given by 
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which would be the probability density that a particle is at x . 
! x " r

i( ) = ! x " xi( )! y " yi( )! z " zi( )  (27) 
is the three-dimensional Dirac delta function. 
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The normalization of the delta function is 
! x " r

i( )dri
V# = ! x " xi( )! y " yi( )! z " zi( )dxidyidzi

V# = 1  (28) 

We also have that (for a single particle) 
! x " r

i( )dx
V# = ! x " xi( )! y " yi( )! z " zi( )dxdydz

V# = 1  (29) 

i.e. the particle must be present in either coordinate system. So 
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because we have N  particles. 
 
! x( )  is the one-body density, and is also known as the one-body distribution 
function. It is the probability density for a particle to be at x . 
 
! x( )dx = ! x( )dxdydz  is the probability of a particle being in an infinitesimal 3D 
volume element of size dx = dxdydz  centered at x . 
 
Quantum 

 
Turn !

c
x( )  into operator !̂ x( ) , which is the operator of multiplication with 
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Multiply R( )  with ! x " r
i( )

i=1

N

# . 

 
Take equation (15): the one-body density ! x( )  is the thermodynamic expectation 
value of the one-body density operator !̂ x( ) . 

!̂ x( ) = Tr !̂ x( )Ŵ{ } = ! x( )  (32) 
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Take equation (24): 
Ô
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Because every 3D particle coordinate r
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 is integrated over V , we may 

relabel the integration variables r
i
! y  and r

1
= z . Hence 
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which is a 3 N !1( )  dimensional integration, where we have used 

! x " y( ) f y( )dy
V# = f x( )  (33) 

which applies for any function f y( ) . We can now relabel the integration variable 
z! r
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. It follows that: 
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We get the same result for all i . Hence (remembering that W R,R( ) = P R( ) ), 
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Relabel the integration variable x! r
1
, and using equation 23, 
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! x( )dx
V
" = N  (35) 

This is particle number conservation. 
 
2.2 The Two-Body Density 
For all particles rigidly fixed to their positions r
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, 1 ! i ! N , the probability density 
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distinct ordered pairs i, j( )  of particles. For the quantum expression, convert to the 
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