PC 1071 — Mathematics for Physicists Semester 1

1. Functions and Graphs
1.1 Functions
x = f(t)
y=g()
z=nh(t)

y = L(x)
y = dependant variable
x = independent variable.

If y has a unique value for a certain value of x - vy is ‘single-valued'.

We can use a formula to describe the function.
e.g. y=mx+c=f(x)

ax+by+c
p=qf+®
I=VIR =2 I=f(V,R)
Input Output
b e

Some functions can only have a certain range of values that the dependant variable can
take on.

y=f(x) y=dependant.

e.g. E(t) = Acoswt

—-1<coswt <1

—A<E(t)<A

Sometimes an independent variable can only have a certain domain.
e.g. f(x)=In(x)

x>0

Other useful properties:

The zero’s of a function — where the dependant variable = 0 (i.e. f(x)=0)
The intercept is when the independent variable = 0 (i.e. f(0) )

1.2 Cartesian Coordinate System & Graphs
L ] P(X’y)

»
»

2D:
y-axis - Ordinate
x-axis — Abscissa

Things to help when drawing a graph:
1.Intercepts and Zeros
2.Asymptotes — does the function tend to a specific value?
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3.Infinities

4.Gradient (1% derivative)
5.Gradient (2™ derivative)
6.Symmetry

7.Range & Domain

e.g. p=cosf
) P(0)=1,p(9)=0,9:i%¢
iy 9P _ _sing

do

When 6=0, -sin 6=0
When 6=11/2, -sin 6=-1
. d?p
iv) ——=-cosf
d6?

vi) Symmetric about p-axis

If f(x) = f(-x) = Even function, e.g. cosB is even.
If f(x)=-f(-x) = Odd function, e.g. sin is odd.

1.3 Polar Functions
P(x,y) 4y

P(r,8)

2

X@
o

P(x,y)>y=f(x)
P(r,0)>r=f(8)

@:r:,/x2+y2 >0
0 is the polar angle.

Relationships between x, y, r, 6.
x=rcosf—-1.1
y=rsin6-1.2

r:\/x2+y2—1.3

N.B. 8 is not unique — we can go around the circle again to get to the point.
-> Polar angle = 6+n21r n=integer.

e.g. (-3,4)
r=5
sin6=4/5=0.8
cosB=-3/5=-0.6
arcsin(0.8)=53.13°
arcos(-0.6)=126.87°
sin(126.87)=0.8
(-3,4)>(5,126.87°)

v

Semester 1
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e.g. Equation of a circle
2 2 2
X +yc=r
y =f(x) = +Vr? — x?
Polar coordinates r=c (where ¢ = radius of circle)

e.g. tracks ona CD

r=b—LG
2T

1.4 Specific Functions
1.4.1 Trigonometry Functions

cos 6 _X
E
sin@ Y
P
tan@ :X:ﬂ
X cosé
secH =
cos @
cosech z;
sin@
1
cotf=——
tan6

sin(x + y) = sinxcosy + cosxsiny
Nomendature: We will use arcsin(x) and not sin'1(x).

Trig Identities
sin(x + y) = sinxcosy + cosxsiny

COS(X + y) = cosxcosy F sinxsiny

sin? x +cos? x =1

Useful ones are:

sSin2x=2sinXxcosx

cos2x=C0s>x-sin’x
=2c0s%x-1
=1-2sin’x

Harmonic functions
Take f(u) = acosu + bsinu (a, b constants)

Let ¢ =+va? +b?

> f(u)= chosu + Bsin u}
c

c
Let ® so that cos®=a/c
sind=al/c
f(u) = c[cos ® cos u - sin® sinu|
f(u) = c.cos(u + @)
With harmonic functions, it is normal to put a constant in front of u.
- f(u)=cos(ku+ @)
From this, we can define frequency, period, amplitude and phase.
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e.g.

Frequency(v) = %

Period = l
v

Amplitude = ¢
Phase = ©

1.4.2 Exponential Functions

X X

-a A a
y

\—/;

X

y=a” where a is a positive constant.

This is an exponential function of base a.
When x=0, a*=1

When x>, a*>e

When x>-=, a*>0

Special case when a=e (2.7182....)
y=f(x)=€" [or exp(x) or expx]
This has the properties that when x=0, g=1.

dy de*

- Implies that - = ——=¢*-1.6
dx dx
kx
de” _yex—17
In =log,
Xaxb _ Xa+b
(Xa)b _ Xab

In(xy)=Inx+Iny

X
In(—) =lnx—-Iny
y

In(x?)=alnx

Inx

e =x
In1=0
Ine=1
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2. Complex Numbers
2.1 Introduction

Consider the quadratic equation x% —2x +2 =0.What are the solutions?
a=1, b=-2, c=2

=-biVb2-mm
2a
x:14_r\/—_1

There is no ordinary number whose square is -1. We call v—1 an ‘imaginary’ number,

and use the symbol i (not to be confused with z or i for current. Also, engineers use j
rather than i.)
Our solutions can now be written x =1+

X, — Iy, is called the complex conjugate of x, +iy,. Itis denoted by z*.

To find the complex conjugate, replace al i’'s with —i’s.
NB: you can always equate the real or imaginary parts on either side of an equation.

2.2 Standard Form
The standard form of a complex number is:
Z=X+y
(x and y are real numbers).
The real part of z is x > x=Re{z}
The imaginary part of zis y > y=Im{z}
(Think of z as having components x and y =2 (X,y)
If a complex number is not in standard form, then it cannot be used.

2.3 Manipulation of complex numbers
2.3.1 Addition

Zy = Xq +1yq
Zy =Xy +1iyo
Zy+2y = (X1 + X)) +i(Yq+Y2)

z+ 7" =2x = 2Re{z}

2.3.2 Subtraction
Zy—z1=(X1 = X2) +i(y; - y2)
z-2z*=2iy =rim{z}

2.3.3 Multiplication
212y = (X1 +iy1)(X2 +iy3)
242y = X1Xg + Xqly 2 +iY1Xz +i%Y1y 5
212y = (X1X2 = Y1¥2) +i(X1Y2 + Y1X2)

Note that i°=1

2.3.4 Division

Note that we cannot divide straight away, as ; is not in standard form.
Xy +1iY,
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z, 1 Xy +iy,
Z—=—"
Z; Z;  Xptly,

v (x1 —iy2) _ (Xz—i}’2): X2 _j Y2

z, xp+iys (X iy )Xo —iva)  x,24y,2 (x,2 +y,° Xo2 + y,°
As this is now in standard form, we can get the desired answer.

Z1 _ Z1Zy *

2
%2 |z,

2.4 Argand Diagrams
Take z=x+iy
We can consider this as having two components - (x,y) = we can plot the number as
Cartesian-like coordinates.

Im
A

-y+ix

-X-iy y-ix

The length of the line OP is r = yx2 + y? .

ris known as the modulus of z (also known as mod(z) or |z]).
[|z*=2x2"]
The polar angle 6 is called the argument of z. It is written as arg(z)=6.

X =rcos@

y =rsinf

X+iy =rcos@ +irsin@ = r(cos 6 +isind)
(Polar form of the complex number)

Rotation:

Multiply by i: i(x + iy) =-y +ix

Multiply by —i: —i(x + iy) =-y—ix

Therefore, a multiplication by i or —i leads to a rotation of 11/2 or —11/2 in the Argand
Diagram.

2.5 Exponential form for complex numbers
z=r(cos@ +isinB)=r.f(x)
df(0)

9 - —sinB+icos6 = i(cos 6 +isin@)=if(x)
X

o de®

e > ——=ie"
dé

-.cos@+isin@ =e®

Therefore:

z=r(cos6 +isinB)=re®

- Euler's Formula

z*=re ™

zz*=re®re® =r?
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2.5.1 Multiplication and Division in the Exponential Polar Form.
zy = X4 +iy, =r,e"
Zy = Xy + iy, = rye”
z,2, = r1r2ei(91+92)
2 _ne" _nieee)
Z; e n

2.6 Exponential form of sin@ + cos@ + De Moivre’s Theorum
e® =cos6+isinb -2.15
e =cosO—isinb -2.16

2.15+2.16 > cos0 =%(e’9 +e™)-217

215-2.16 > sin@ =%(e’9 —e)-2.18
I

- These can be used to prove many trig identities.
In 2.15, let’s replace 6 by n8

i . io \ ..
e’ = cosn6 +isinnd = (e’e) = (cos @ +isinB)"

cosnb +isinnd = (cos 6 +isin@)"|-2.19
De Moivre’s Theorem

Examples:
1.What does i' equal?

i% . ,
e =cos%+/sm"2=/

(ei%Jl = eiz% = e_% = 4.81

2. =cosm+isinm = -1

T /2
-1[ 1
3n/2¥j2n

ei3% _

3. =1=¢e"?"" > n=integer.

2.6.1 Application of De Moivre’s Theorem

Example 2.4
Express sin36 and cos3 6 in terms of powers of sinB and cos®

cos 36 + i sin36 = (cos 6 + i sin 9)3

= (cos 6 +isin6)*(cos 6 + i sinH)

= (0032 6 —sin? 6 + 2i sinH cos GXcose +isin6)

=cos® 6 —sin? Bcos O + 2isinBcos? O + i sinfcos? B —isin® 6 —2cos Osin’ 6

= (0033 6 - 2sin? Ocose)+i(30032 6sin6 - sin® 6)
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Real parts: cos36 = cos® 6 — 3sin? 6cos 6
Imaginary parts: sin36 = 3cos? 6sin6 —sin® 6

How about getting powers of sin6 + cos 8 into sinnb + cosnb ?
Let z=e"%,z" =™ =cosn6 +isinnd

-n 1 —in@ ' i
z"'"=—=¢ =cosnB —isinnd

zn

z" +in = (cosnB +isinnB)+(cosnb —isinn) = 2cosnb - 2.20
z

Similarly z" —in — 2isinngd - 2.21

z

Example 2.5
Take n=1 and use 2.21

z——=2isinf

=L 23’—22+1—z+g—i

8 z z 78
=L ze’—3z+§—i

8 z 23

i(_.3 1 3i 1
=z ——|-—|z2-—

8 z3 8 z

(2isin39)—%(2i sino)
sin® 6 = %sin@—lsin3 6

Example 2.6
nth roots of unity

i.e. what are the roots of z'=1?
e =16k — 1k =042,...

z" = k=01...,n-1
Take nth root of both sides

(Zn)% e (ei2krr )% _ eiZk%

z:eIZk%
k=0,z=1
k:1,z:ei2%
k =2,z:ei4%

k=n-1z-= eiz(n_1)%



PC 1071 — Mathematics for Physicists Semester 1

Im
21/2
\ Re
4mi/3
e.g. n=3
z=1
2-6""5

4im, —2im
z=e 3 =¢ s

De Moivre’s Theorem
e’ =cosn6 +isinn6 = (cos @ +isinb)"

e’k Kk =integer
The roots of a polynomial with real coefficients occur in conjugate pairs.
- Remember a real number is its’ own conjugate.

2.6 Hyperbolic Functions

The hyperbolic functions are the complex analogies of the trig functions.
Remember 2.17 and 2.18

COS X = %(e”‘ + e"x)
sinx = %(e”‘ - e’ix)
Now:-

cosh x = %(ex + e‘x)

sinh x = %(ex - e’X)

X—>ix into cos - gives cosh.
cos(ix) = %(e”‘ +e™ ) = cosh x

ie.:-

cos(ix) = cosh x

isinhx = sin(ix)

Very simply, we can show:
i(sinh x) = cosh x

dx

icosh X = sinh x
adx
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2.7 Applications of Complex Numbers in Physics
Damped Oscillator

= NAa
: K&

Equation of motion:
2
Fohx— b _pdX
dt dt?

2
mu+b%+kx:0
dt?  dt

d?x  bdx k
—+———+—x=0

dt? mdt m

2
[With no damping > %+%x =0 - Oscillation at frequency w, = \/g]

d?x b dx 2
—t——+w, x=0
dt2  m dt

We want to find x(t)

Try Re{z} = x(t) = Re{AOei“’t}

% = A iwe™ = A iwz
2 .
—‘thzz = Aw?e™ = ~A w?z

Substitute into equation of motion (for z)

. b
—w22+/—wz+wozz:0
m

. b 2
—wlri—w+w,” =0
m

i.e. quadratic in w .

w ~b++b? - 4ac

2a
ib \
w=—=w
2m
. b Y\
Where w'= w,,|1-
2mw,

Substitute into z = A e™"

Semester 1

10
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l[—iw']t - .

z=A,e 2" = A, e2m gt
(=)

x(t) =Re{z} = A,e\?™ cosw't

Interference of two electromagnetic waves of equal intensity
ad

E, =A, coswt
E, = A, cos(wt +5)
0 accounts for the path distance between two waves

E,+E, = A,(coswt + cos(wt + 5)) = 2A, cos[wt + %) cos%

(cos(wt + %) is ignored)

Intensity = |E, + E,|* = 4A,2 cos? 0

4A,°

\
E, =Relz,} =RelA,e! |
E, =Re{z,} = Re{a, e/l

Let

11
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Z,+2, = A, (e"”’ + e"(“’”‘s))
| = |z1 +22|2 = (21 +22)(z1 +22)*
= Aoz(ei“’t + e"(“’”‘s)Xe”“‘” + e’i(“’t*‘j))
A1+ 1467 167
%( ° +e"5): cosd
1+ cosd = 2cos?(5/2)
= A,%(2+2cos o)
= 2A,%(1+cosd)
I =4A,% cos?(5/2)
Complex Induction in Electronic Circuits

Define:
z,(impedence) = R Resistor

z, = L Capacitance
iwC

z, =iwL Coll
Impendence can be combined like resistors.
Z4 Zy

ZT :Z1+22

Z4

S

Z4+ 2

I(t) v(t)

V(t)=Vmax=const. C‘) -

R z
Let v(t) = Re Y maxe™ |

c

I = K = Re{ﬂ}

12
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iwt
It = Re{""}i} - RefwCV, o™ |
%(.UC

I(t) = WV C. Re{i cos wt + sin wt} =-wCv,,,, sinwt

I(t) v(t)

%

- I(t) ‘leads’ the voltage by 90°

V(t)=Vmaxcoswt <~>

I(t) ‘lags’ behind v(t) by 90°.

Semester 1

13
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3. Differential Calculus
3.1 The Differential
A differential describes the rate of change of a function.

y2A Q
Y2- Y1
P a
Y1 o X
X4 X2 >
tang = Y2 Y1 _ (const.)
X2 = X4

tana is the gradient
y=f(x)

Q tangent

f(x+0x)=y+0dy

A@ b

yf(x)=y

X X+OX

If we take P’+Q’ lose together then
f(x + Ax)—f(x) _Af
X+ Ax) -x A
As Ax gets smaller & smaller the approximation gets better. (Makes no sense when
Ax=0->0/0)
Define the first derivative of a function as:-

fFixy= 9 _d ar

f(X)E
Flx) = lim 0{f'(x+Ax)—f(x)} 31

tana ~

dx dx ax
AX —> AX

No 1% derivative

No derivative

14
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df(x)

Near to point P’, Af is given by Af x ——Ax - 3.2
X

The second derivative is the gradient of the gradient.
(i.e. replace f(x) by f(x) in 3.1)

P = lim {f'(x+6x)—f'(x)} 34

AX >0 AX
' 2
_dfi(x) _d°f 4
dx dx?
2 2
[Note arr # (d—fj ]
dx? dx
f(x) f(x)
x" ax"™"
sinax acosax
cos ax —asinax
tan ax asec? ax
eax aeax
Inax 1
X
sinhax acoshax
coshax asinhax

3.2 Differentiation of products — “product” rule

Semester 1

e.g. f(x) = x°cos3x
Let u(x) = x°, v(x) = cos 3x
s (X)) = u(x)v(x)
From first principles:
o= [f(x +AX) - f(x)}
Ax —> 0 Ax
Take top line
f(x + Ax)—f(x) = u(x + Ax)v(x + Ax)— u(x)v(x)
=u(x + AXV(X + AX) — u(x)v(X) + u(x + AX(X) — v(X)u(Xx + Ax)
= u(x + Ax)v(x + Ax) = v(x)]+ [u(x + Ax) = v(x)p(x)
So now:
p lim [u(x + AX)V(x + Ax) = v(x)]+ [u(x + Ax) - v(x)]v(x)}
(x) =
Ax -0 AX

F(x) = u(x)v' (x) + U (x)v(x)|- 3.6

Extending to three functions:
G(x) = u(x)v(x)w(x)

‘G'(x) = u' (X)W (x) + u(xV'(xw(x) + u(x)v(xw'(x) ‘ -3.7

3.3 Function of a function — ‘Chain’ rule
e.g. f(x) =vV3x?% +1 = Ju(x)

Here u(x) = 3x?% +1, the square root operates on v(x)
Since Af, Ax, Au are small
Af _Af Au

AX AU AX
When Af, Axand Au > 0

15
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dx du dx

3.4 Implicit Differentiation

So far only differentiated functions of the form y=f(x)

f(x,y)=constant

Differentiating this is called implicit differentiation.
- Differentiate both sides and use the chain rule

- Collect terms to find Z—y

X
e.g. equation of a circle f(x,y)=C
x% + y2 =4
d( » 2 d
—x° + =—4
dx( 4 ) dx
2

2Xx + v 0

dx
2x + 2yd—y =0

dx
dy __x
ax y
a _ -x
ax 4 x2
1
Check using explicit function y = V4 — x? = (4 - x2)/2
-1 _

d_y:1(4_xz)é(_2X):—X
dx 2 4_ x2

3.5 Differentiating in terms of a parameter
If x=x(t) and y = y(t)
dy
dy dydt 4
then —=——=
dx  dt dx ax
dt

-3.10

3.6 Logarithmic Differentiation

If y =a* -take logs of both sides then differentiate.

y=a"

Iny =xlna

d d

—Iny =—xlna
dx dx

1d

——=lIna

y dx

d—y:ylna =a“lna
dx

3.7 Inverse function

Lady g
Uses: K_/dx
dy

3.8 Maxima, Minima of points of inflexion

Semester 1
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When Z—y =0 we have a stationary point.
X

3 types:

Maximum

Point of inflexion

Minimum

2

. d
For a maximum, —g <0

dx
2
For a minimum ay >0
dx?
d?y d?y
For a point of inflexion —— =0 AND ——- must change sign either side.
dx? dx?

3.7 Estimating small changes

Remember f'(x) = df _ lim {M}

T dx Ax—0 AX
For small steps YA f'(x) {We normally work with oy ~ f'(x)
AX ox
oy =f'(x)dx
Example 3.10
Estimate the increase in the surface area of a circle if its’ radius increases from 10cm to
11cm.
Surface area=1r? = A = A(r)
A _ A'(r)=2mr
ar

= 8A ~ 2mrdr = 2mx0.1x0.01 = 0.0063m?
Check: AA = m(0.11 —(0.1)* = 0.0066m?
Error is less than 5%.

3.8 The Newton-Raphson method for numerically solving equations
Some equations have no analytical solution, i.e. we can’t easily find the roots — in this
case we need to guess the solution and improve on this guess until we get to the
required accuracy.

17
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y=f(x)

X4

Xy

Xo

— Make an initial guess, say X,
— Find the gradient at x,>f(x,)
— Find where f'(x,) cuts the x-axis — this is x;.
— Repeat until accuracy as required.
P (x,) = 0]
Xo — X1

_ f(x0)
F'(xo)

X1:X0

Example: Find arootof e ™* —x =0
If x=0, f(x)=1

If x=1, f(x)=-0.63

Guess x,=0.5

fi(x)=—e* -1
05 _
X, =05 —60—50'5 ~ 0.5663
-e 7 -1
Xo = X4 —M =0.5671
f'(xq)

f(x,) = 0.0000678

18
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4. Series & Expansions

Notation:

[

Mz
<

>

Terms uq + Uy, + Uz +...+U, =S, =Sum. Another expression is S,

3>
[
N

[Be careful: the counting index is often i, j, k, ...]
The series can be finite or infinite.

4.1 Arithmetic Series

The difference between each term is constant.
-1
S,=a+(@+d)+(@+2d)+..+(@+(N-1)d)= Y (a+nd)
1

2

]
Il

N-1 1

>n)= 5 (Vv 1)
n=

Write down S, + S,, with the second one backwards.

25, :a+(a+d)+(a+2d)+...+(a+(N—1)d)+[a+(N—1)d]+[a+(N—2)d]+...+a
:[a+a+(n—1)d]+[a+a+(n—1)d]+...+[a+a+(n—1)d]

N terms all the same.

2S, =N[a+a+(n-1)d]

S, = %[ﬁrst.term + Iast.term]

Firstterm = a
Last term = a+(N-1)d

0
N—1 N-1 N-1
+nd=Ya+dYn=Na+d— N( ~1)

n=0 n=0 n=0

[a+a+d(N-1)]

Example: sum all even integers between 0 and 500 (inclusive)

250 1
> 2n= E251(0 +500) = 62,750
n=0

(251 terms starting at 0)

or:
249 1

> = 5250(2 +298 +2) = 62,750
n=0

(250 terms starting at 2)
NB: Infinite arithmetic series always increase or decrease indefinitely > they diverge.

4.2 Geometric series
This is a series where each term differs from its’ predecessor by a common factor.
N-1
> ax" Runs from ax® 2 ax""' (N terms)
n=0
The sum of a geometric series is

Zax (11 Xn) -43

- X

Proof. Write down s, then subtract xS,, from it.

19
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S 4+ xM

S, =1+x+x
xS, = x+x% +x3 + x4+, +xN
Sy - XSy =1-x"
(1-x)Sy =1-x"
(i

1-x

Infinite geometric series either diverges or converge.

o lim —xN lim

S axn i a1 X :( a ] [ (1—XN)
o N - o 1-x 1-x )N -

If |x| > 1 the series does not converge, x>1 — diverge. x<-1 — oscillates.

If x| <1 then S ax" = 2
|x|< en%ax T

Example 4.2
6 5

a) >.(0.2)" b) de"
0 n=0

n
a) has 7 terms — N=7, x=0.2.
6

1-0.27
02)" = =1.248
EO( ) 1-0.2
b) N=6, x=3
5 6
zzN_1 3 = 364
n=0 -3

4.3 The Binomial Expansion
Used for function of the form (a+b)".
If n is a positive integer, then:

n-1a"2b% n(n-1\n-2)a"3b*
7 " 3 -
There are n+1 terms and its’ symmetrical about a and b.
Special case when a=1 2> (1+x)". (b=x)
n(n-=1)x? n(n-1)n-2)x*
a2 3

@+b)" =a" +na""'b+ n .4+ b"-45

+..+x" -46

(1+x)" =1+ nx +

= z i (nn!— 1) Coefficient

n
i=0
If x<<1, we can terminate the series when we have reached the required accuracy.

(1.01)® = (1+0.01)? - may only need a few terms to get to the required accuracy.
See examples sheets & workshops.

4.4 Taylor (And Maclaurin) expansions
— Used to get a series expansion for a function.
— Very useful for approximating the function.
— Function must be continuous, single-valued, and have derivatives up to f™"x.

7 (), 7 (3),..s P ()]
Consider a polynomial P(x) = a, +a;X + a,x? +...+a,x
If we let x=0

n
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P(0) = a,

P'(0) = a,

P''(0)=2a,

P (0) = (n-1)a, 4

P"(0)=nla,

We now want to approximate f(x) by P(x) [near to x=0]
- f'(0) = P'(0)

f'(0) = P"(0)

The coefficients of P(x) are:-

a, = P(0) =1(0)

1 1
P'(0) _ '(0)
27T T
a, = ip(O)(O) — 1f(n)(0)
n n
So, for x sufficiently close to 0, P(x) ~ f(x) and

2 3 ngn
X170 47
n!

F(x) ~ £(0) + xf'(O)+X2—|f"(O)+);—|f”(0)+ ot
This is the Taylor expansion of f(x) about x=0 — Maclaurin expansions / series (special
case of the Taylor expansion around x=0)

If we let the series become infinite, we might expect the approximation to become
equality.

-> this may not be the case.

- There will be a range of validity (a range of x) for which the Taylor series converges to
f(x)

Common Taylor expansions (about x=0)

i x4+ x2— x4 [Valid —x<x<1]

1+ x
) x x? x* .
i. e¥=+>+"—+"=—+.. [Valid for all x]
1 20 3
{x=1,e1 =1+1+1+l+..}
1 20 3
3 45
iii. sinx=x-—+——... [Valid for all x in radians]
31 5l
x?  x*
iv. COsSXx =X _7+T_'" [Valid for all x in radians]
.X2 .X3
v. In(1+x)= X= [Valid for —1< x <1]
1)y 2
vi. (1+x)" = 1+nx+%+... [Valid for -1< x <1, any n]

These are very useful for approximating functions.
e.g. small angle approximation for sinx=x, when x<<1
Can be used to determine the values of functions of seemingly indeterminate places.

SINX What is this when x=0?

e.g.
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sin0 _0y,

0 0

3 5
o T 2 4

sin x 3l 5l _1_x_+x_

X X 3 5!
When x=0
sin x

4.5 Taylor series about points other than x=0
x—>x-¢ You could do this substitution.
Example 4.5

In general, the Taylor series about a point x=c is

f(x) = f(x)+%f'(c)(x - c)+%f"(c)(x —cff +..|-4.8
This is the Taylor series. Remember the Maclaurin series
f(x)= f(0)+ (x)f ( }"(0) +... about x=0.
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5. Integral Calculus
5.1 Antidifferentiation
Consider:

i) isin x = f(x) - what is f(x)?
dx

ii) iF(x) =cos x - what is F(x)?
ax

Semester 1

i) We know that f(x)=cosx, therefore we might assume that F(x)=sinx which is true!

Therefore, sinx is an antiderivative of cosx.
sinx+1 is also an antiderivative.

What are the functions, f(x) whose gradient is always = cosx?
Take another example: find y(x) if Z—y =2x

X
Try y=x"

y=x"+1

2

y=X

g=2x

| —
—

2

y=x"-1

In general y=x2+c — there are an infinite number of antiderivatives.

Formally F(x) is an antiderivative of f(x) if diF(x) =f(x) -5.1
X

All the antiderivatives are given by F(x)+c
Antiderivative = indefinite integral

5.2 Signed Area
+ve area \

"W\\
-ve area

W
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Ox

X X+0X

5A
f(x)

We want to work out the signed area contained under f(x) between a and v. The small
area dx is very nearly a rectangle.
OA ~ f(x)0x

5A_f()

()¢
Let 6x - 0 and %: f(x)
ox
Rewrite diA(x) = f(x) Compare with 5.1
X

Therefore A(x) is the antiderivative of f(x)
SAX)=f(x)+ k

When x=a, A(a)=0, .. k = -F(a)

From a to be the signed areais A = A(b) = F(b)- F(a)

Signed area= F(b) - F(a) = [F(x)]2 - 5.2

Alternative method:

. 4

Divide the integral between a and b into N equal steps so that dx = b-a
x=b

Therefore total area= ZéA > f(x)

X=a X=a
As 6x — 0, the approximation becomes equality.

lim z=b
Zf x)ox -5.3
- b

The brief notation is Zf(x j (x)dx -5.4

a

Equate 5/4 and 5.2
j f(x)dx = [F(x)° -5.5

Thls is called the definite integral.
[f(x)dx is the indefinite integral.
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5.3 Symmetric Integrals
Take an odd function, where f(-t)= —f(t) [e.g. t, t*, t°, sinat, tanat, ...]

e.g. sint

If we integrate about equal distances either side of the line of symmetry, the signal area =
0.

>|[° f(t)dt =0|-56

(for an odd function)
Similarly for an even function f(~t) = f(t)

[ f(tyat = 2[ f(t)dt |- 5.7

(for an even function)

5.4 Definite integrals with variable limits
E.g. I(x) = f:f(t)dt , ¢ is a constant.

As always I(x) = [F(t)]¥ = F(x)-F(c)
[Where F(t) is an antiderivative (indefinite integral) of f(t)]

di(x) _ d (x _ dF(x) _
Tax ok =g~
or

d x
E L f(t)dtf(x)|- 5.8

We can also show ij‘cf(t)dt = —f(x)|-5.9
ax °x
The general case:-
4 _ dv(x) du(x)
o Lo [0 = v (0) == = () ==~ 5.10
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5.5 Standard Integrals
f(x) [ F(x)ax
x" (n=-1) x™
+cC
n+1
sinax 1
——cosax +c
a
cos ax 1 .
—sinax +c¢
a
eaX eax
+c
a
a aln|x|+ ¢
X
sinhax 1
——coshax +c¢
a
cosh ax 1 .
—sinhax +c
a

5.6 Useful Hints
5.6.1 Integrand = exact derivative

| ’;((:)) dx = Inff(x)| + c— 5.11

[ (x)F(x)dx = %(f(x))z +c—5.12

[ PO g = 2F(x) + c - 5.13

JF(x)

%(%(f(x))z . C] _ %f(x)f'(x) = f(x)f'(x) as required.

5.6.2 Integration using Partial Fractions

Example 5.1

Example 5.2

N[ o Tpx-a,
x? —a’ (x+a)(x—a) 2a |x+a

General rules for partial fractions:

If we have a rational function f(x) = % where P(x) and Q(x) are polynomials and
X
the degree of p(x) < degree of Q(x), then Q(x) can be split into partial fractions as
follows:
a)Each term of the form (ax+b) gives a partial fraction
k

(ax + b)

b)Each repeated term (cx +d)" gives partial fractions
L, L, L, L,
(ex+d) (cx+d)? (cx+d)® " (cx+d)"
c)Each irreducible quadratic px% +qx +r gives a term
Mx +N

(ox2 +gx+r)

Where k, L;, M and N are constants.
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(See Jordan and Smith, examples 1.12->1.15)
NB: If px? +gx +r has no real factors we complete the square and substitute — see

next section.

5.6.3 Integration by Substitution
Steps to follow:- (Assuming [ f(x)ax )

i. Examine f(x) for suitable substitution

ii. Use u=g(x) or x=h(u) where g and h ‘make up’ f(x)

ii. Differentiate x=h(u) to get dx=h’(u)du or u=g(u) to get du=g’(x)dx
iv. Perform the substitution (making sure the only variable is u)

v. Do the integral

5.6.3.1 Letting x=h(u)

Example 5.3
f(x) j F(x)dlx Substitution
1 . [xj X =asinu
arcsin| — |+ ¢
a? - x? a
1 1 X X =atanu
7 2 —arctan| — |+ ¢
X° +a a a
1 . (xj x =asinhu
arcsinh| — |+c¢
x? +a? a
1 (Xj Xx =acoshu
arccosh| — |+ ¢
x? - a? a

5.6.3.2 Completing the Square

Example 5.4

5.6.3.3 Integrals of the form j F(g(x))g' (x)dx

If we let u=g(x), du = g'(x)dx

[F(g(x))g"(x)dx = [ F(u)

Jordan and Smith only use two examples of this form:-

[ f(ax + b)ax
[f(ax? + b)xdx
Example 5.5

5.6.3.4 Integrals of the form [sin" ax cos™ axdx

Where n and m are odd (sometimes even) * integers.

Rules

If n+m is odd, choose either:-

[sin” axcos™ axdx = [sin"" axcos™ axsinaxdx and use u = cosax (if n is odd)

or:

jsin” axcos” axdx = jsin” axcos™ ' axcosaxdx and use u = sinax (if m is odd)

The aim is to get m-1 or n-1 even.
If n+m is even use either method.

Example 5.6
Example 5.7

5.6.4 Integration by Parts
Remember the product rule in differentiation.

Semester 1
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d _ dv(x) du(x)
OV 00) = u(x) ==+ v =

[(uv) = uv'+u'v]
Integrate both sides

uv = '[uﬂdx+.fvﬂdx+ c
dx dx
Rearranging:

dv du
Uu—dx=uv-|v—dx+c|5.14
I dx -[ dx

Example 5.8
Aside:

How do we integratejln xdx ?

jln xdx =I1xln xdx
du 1

dx
Example 5.9
Example 5.10

5.6.5 Reduction formulae
Show by example.
Example 5.11
Specific example:

m

m-1

m

sin™ 2 xdx—5.15

o3

2
J'sinm dx =
0

If m=6

m

o—an |

2 _
J'sin6 dx :u
0 6

In a similar way we can show:
m

2
jcos’" dx =
0

m-1

cos™ 2 xdx —5.16

3
o—nN |3

Another example:

[e~t"dt = N[e't"dt = N(N—1)[e~t"2dt
0 0 0

Te"todt “Let] =1
0

[etNat = N(N = 1)(N - 2)... = NI |- 5.17
0

5.7 Simple Line Integration

m

_ B _1\2
sin® xdx = 6-1y4-1)2-1 Isino xdx =
6 4 2 ),

Semester 1
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y=f(x)

As Ay
AXx

v

We call the distance along the line As.
When Ax, Ay, As are small

As = (Ax)2 + (Ay)2
Divide through by Ax

a5 —\/ Ay 1+ (Ay
Ax

AX

Cdmoas_dmo [ (ay) \/ng_ﬁ
TAX—>0AXx Ax—0 (Ax)? dx  dx

ds ds?
1+—

5.18
dx ax

To find the length of the curve between x=a and x=Db, integrate both sides of 5.18

j"’ﬁdx—s_j 1+— dx 5.19

Example 5.12

3
Find the length of the curve y = xé between x=0 and x=3.

dy _3,%
dx 2

3 dy 2
Sz.[o 1+(aj dX
1
3/ 9 3 9 A
S:.[o 1+Zxdx:jo(1+ZxJ dx

3
Y
S = 1+gx 24 =54
4 39
0

(Wrong in worked example)
In general for a line integral we integrate along a (defined) curve in space and the
integrand is a function defined at all points.
This is denoted by:

[f(x.y.2)ds|5.20
C

where C is the path of integration, and ds is the parametric variable.
Example 5.13
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In the x,y plane a function varies as f(x,y)=xy3. Find the line integral along the path y=2x
between points A=(-1,-2) and B=(1,2).

We want to evalulate fxy3ds .
c
We now need ds in terms of x or y (and hence dx or dy)

2
Choose x, we know that E =1+ d_y from 5.18.
dx ax

- ds = (1+4)2dx = v/5ax

1

jxysds = «/§f8x4dx
c -1

(Substituting y=2x)

= 8@{%}_1 - %[1”] _ %

5.8 Integrating in polar coordinates
In plane polars we describe the function, r = f(6)

AY g’g
T r 0A = f(x)0x
0

v

The incremental area, 0A, is a narrow circular sector of radius r and angle 6.
00 is a fraction of the full circle.
90 2 _sa-1r250
21T 2

li 0=p B
= M S g0 - (120

00 > 0,2 i
Example 5.14
Find the area of a circle of radius 2.
(We know A =1mr? =41)
r=f(0)=2

Vi 1 5 2T o

A= hr d6 = £d6:2[9]0 = 41

5.9 Selected Applications of Integration

5.9.1 Centre of Mass
Suppose we have N particles of mass m, with positions (x,,y,), n=1,2,...,N
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(xy) —TT— *

v

The balancing point is the point such that the total momentum about that point is zero.
Take x and y directions separately.

n -

Zmn(xn —x)=0 5.22
zm (v, -y)=0523
Zmnx,, —}zmn -0 5.24
n=1 n=1

n — h
>myy,-y> m,=0 525

n=1 n=1

N
Total mass M = >'m,

n=1

— N
Take 5.24 x = %ZXHmn 5.26

n=1

y = Yy 5.27

IN MZ

A
M
Assume a plate of uniform thickness and hence uniform mass/area, p (kg.m™)
A
y

d
/@ M
S

V X:
a \ (ij

c X

\ﬂr\ 6y

The length of the strips are V(x) and H(y). Therefore, the mass of a strip = uV/(x)dx
and pH(y)oy
lim x=b (

V(x)5x =0
6x—>OZ; )” (x)ox =

i X= x=b__ —
From 2.22 . ZX,UV(X D> xuV(x)dx = uxA

xX=a

6x—>0

where A= fim Z:{‘JV(x)dx
ox —>
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_ b
X = ij xV(x)dx—5.28
A a
d

1
= ZIyH(y)dy— 5.29

c

<

5.9.2 Moment of Inertia
Moment of inertia is important for circular motion. It is similar to mass for linear motion.
Normally given the symbol I.
Energy in linear system = Yemv?
Energy in a circular frame = %4lw?
Momentum: mv, Iw.
The moment of inertia of a mass m about an axis is mr® where r is the perpendicular
distance between the axis and the mass.

M

axis

Example
Find the moment of inertia of a uniform rectangular plate ABCD about the edge AB,

where AB=2, BC=6, mass/area=2

Area of the shaded rectangle = 26x.
Mass of shaded rectangle = 46x

dm=45x
Bl=4x%dx
6
li x=6 li x=6 6 3
1= " Nei= T Y ax?ex =4[ x2dx =4 X | 288
ox - 0,5 ox —> 0,3 0 0
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6. Differential Equations
6.1 Introduction

2 n
If y =f(x), then any equation having some or all of the terms x, y, d_yd_é/ d’y is
ax  dx dx"

called an ordinary differential equation (ODE)
The order of an ODE is the highest derivative involved.

Eg:
v y? First order

dx

4 2

d {+sinxd ‘Z+2y:0 Fourth order
dx dx

dy s 2 .

— | =x°“+1 Firstorder

dx

An ODE of order n has n linearly dependant solutions which form a basis of solutions.

Example 6.1
yd—y = —x (First-order)
ax

To solve, integrate directly.
dy
—dx = —| xdx

J‘y dX .[

Iydy:—jxdx

This is called the general solution.

Therefore, the solution is a set of circles of radius JA .

If we know some initial conditions or boundary conditions, we can pin down a specific
solution. This is called an initial value problem.

E.g. if y=4 when x=0, A=8.

2 2
Therefore specific solution isy7 +—=28.

2

6.2 1° order ODE’s
i.e. of the form dy =f(x,y)—6.1
ax

6.2.1 1° order separable ODE’s
In this case Z—y =g(x)h(y)—6.2
X

To solve we separate the function f(x,y) into g(x) and h(y).
We can now integrate directly.

J'% = fg(x)dx —6.3

Example 6.2 (a, b & ¢)
a) dy _ —y? y=1 when x=0
dx

In this case h)y) = -y?,g(x)=1
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d
.'.jy—}2/=jdy

1
—=Xx+c

y
1
C Xx+c
x=0,y=1->c¢=1
1

e

b)d—y=x+xy:x(1+y)
dx

g(x)=x.h(y)=1+y

d
_[1+yy:jxdx

2
In|‘|+y|=x7+c

x? x? x?
2

~—+c c
1+y=e2 =e2e°=Ae
2

x
y=~Ae? -1

1 1
—-—+Iny=Inx+—+c
y X

Summery of method:

— Factorise the equation to get g(x)h(y)

— Separate to get g(x) and h(y) on different sides.

— Integrate directly to get general solution (with constant)

— If initial value problem, evaluate the constant to get the specific solution.

Example 6.3
Newton cooling

Semester 1

An object at temperature T in ambient air at temperature T,, satisfies the equation

% = k(T = T,) (h(T)=(T-To), g(t)=-k)
aT
| o k| ot

InT —T,| = -kt +¢c
T_TO — e—kt+c — Ae—kt

T=Ae™+T,
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If air temperature = 40°C, object is at 100°C when t=0
100=A+40 > A=60

T =60e ™™ +40 Specific solution.
If the temp is 85°C after 3 minutes
85 = 60e % + 40

45 _ o3k

60

In0.75 = -3k

k =0.096
(In minutes)

6.2.2 1% Order Linear ODEs
A linear ODE is one with no squares (etc) or products involving y and its derivatives.
They have the form:-

% +P(x)y = Q(x)-6.4

E.g.:-

d—y+ysin2 X =

- linear.
dx 1+ x

d 2
[—yj +y =0 - non-linear
dx

yd—y + x =1 - Non-linear
dx

These linear equations can be solved using an integrating factor, I(x)
dy
Take — + P(x)y = Q(x
5 H Py =ak)
Multiply through my I(x)
Id—y+IPy =Ql -6.5
dx

If we choose I(x) so that

M: Id—y+le -6.6
dx dx

d(ly)
=Ql -6.7

i Ql -6
Integrate both sides.
[dlly)= [Qidx
ly = jQIdx
Or
1

y= WIQ(X)I(X)dX -6.8
All that remains is to find I(x).
Expand left hand side of 6.6
dlly) ,dy  dl

dy
2= —=]=+IP
ax dx+ydx dx+ y

This is a separable ODE.
ar_ [ Pdx
/

InI:_[ Pdx
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I = epr P(x)dx) -6.9

Summery:
— Find the integrating factor / = epr P(x)dxj

— Rewrite as M =1Q
dax
1
— Integrate to get y = ——| /(x)Q(x)dx
g get ¥ = 15 [ 1x)x)
[Remember the constant of integration]
— Use any initial conditions to find specific solution.

Example 6.4
Example 6.5

6.2.3 Bernoulli’s Equations
Z—y+ P(x)y =Q(x)y",n =01 -6.10
X
Rearrange:-

1dy 1
y—na"r yn71 P(X)= Q(X)

And now substitute v =y > 94— (1-

dx dx ~ ymndx (1-n)dx
Therefore Bernoulli’'s equation becomes:-
1 du
———+P(x)u = Q(x
oy " P00 = Q00
or:

% +(1=n)P(x)u = (1- n)a(x) - 6.11

Therefore the integrating factor is /(x) = exp(.[ (1- n)P(x)dx)
Example 6.6

Solve ¥ Y _ 2x3y*4
dx x

P(x)zl,Q(x)z 2x3,y"=y* 5n=4
X

Substitute u =y = y‘3,ﬂ =-3y~* dy

dx dx
2N B
y*dx yix
From 6.11 (or by rearranging)
ﬂ _ 3_U = _6)(3
dx X

Integrating factor
I(x) = epr P(x)dx) = epr _—dej = exp(-3Inx)= exp(ln x‘3): x3
X

36



PC 1071 — Mathematics for Physicists

x3u= _[ e (— 6x3)dx = —6_[ ax

x3u=-6x+c

u=-6x*+cx3 =y

y= (— 6x* +cx? )_1/3

6.2.4 Clever substitutions
Example 6.7

Solve sec? yj—y +xtany = Q(x)
X

Substitute w = tan yyc(!j_w = sec? yd—y
X

dx

Therefore the ODE becomesccjj—W + xw = Q(x), which is linear in w.
X

Another useful trick:-

%:f(ax+by+c) -6.12

Semester 1

If we substitute u = ax + by + ¢ then % =a+ bd—y . Therefore the ODE becomes:-
X

ﬂ=a+bd—y=a+bf(u)
dx dx
ﬂ:amf(u) -6.13

dx

which is separable.

Example 6.8
dy 2
Solve —=(x+y +1
5~ Xy )

Therefore a=b=c =1

u:x+y+1—>d—y:1+d—y
dx dx
.'.%=1+d—y=1+u2
dx dx

d
Il
tan'u=x+c

tan'(x+y+1)=x+c

Homogenous ODE is of the form:

d—y:f(ZJ -6.14
ax X

Solve by substitution v =¥,y = xv(x)
X

sothat & - v(x)+ x
dx dx

Therefore 6.14 becomes

ax
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dv
“Y_f
v+xdx (v)

dv
x—=flv)-v
ax ( )
which is separable.
=15
flv)-v X
f ay = f(x,y) and f(x, y) and g(x,y) homogenous and of the same degree the ODE
dx  glxy)
is still homogenous — use the same substitution.

A function is said to be homogenous of degree m if f(kx,ky)= k™f(x,y) - 6.15

Example 6.9

Summery of solving 1 * order ODE’s by substitution
1.Check to see if it is linear in a function y — solve as linear ODE

2. Z—y = (ax + by + ¢) > substitute v = ax + by + ¢ > the ODE becomes separable.
X

3.1f the ODE is homogenous, i.e. Z—y = f(LJ substitute y = xv(x) - separable
X

X
4.Equations of the form Z—y = % homogenous if f and g are of the same degree
X y
> substitute y = xv(x)

6.3 Second Order ODE
d?z
dt?

There are two constants requiring 2 initial conditions.

2

=mg If we integrate twice % =mgt+c, z= mgt +cit+c,

6.3.1 Special Cases
The general form of a 2" order ODE is:-

2
9V Y . 616
dt? dt

If v is absent

2
dPy _f,
dt? dt

This is now a 1% order ODE in %

Substitute v = % Our ODE becomes %f(t,v)

Therefore use the techniques of our last section.

If tis absent

2
d_y =f y’d_y
dt? dt
2
Again substitute v = dy dy _dv._dvay ﬂv

dt ot2 dt dy dt dy
Therefore the ODE becomes:-

vz—;zf(y,v)
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This is now a 1% order of v in terms of v.

If both t and dy/dt _are absent:

dzy
— 2 =f y
T )
Use % as an integrating factor.
: dy
Multiply through by o
2
IV A _ )W
dt? dt dt
2
d 1
2\ dt dy
dt =1 )E

Integrate both sides:

1(dy)?
E(Ej =J f(y )dy + const.

6.4 2™ Order ODEs with const. coefficients
The general form is:

d’y _ dy

——+a;—+ayy =flt)|-6.17

a2 174t 2y ()
2

If we set f(t) =0 so that C:j—;v+a1 %+a2y =0 and find yc(t) a solution.
t

If we substitute this into the ODE we get 0

Then find a solution for the full ODE y,, (t)
yit)=ye(t)+y,(t)

v, (t) is the complimentary function (CF)

yp(t) is the particular integral (PI)

The complete solution is the sum of the CF and the PI.

6.4.1 Finding the CF
The CG is the solution of the auxiliary equation (or homogenous equation)

2
Zx—g+a13—i+a2y:0 -6.18

Try a solution y = Ae™

% = /\Ae“,% = P AeM

NPAe™ +aMe +a,Ae™ =0

X +aA+a, =0 -6.19

Therefore we can find A by solving the quadratic equation.

There are three possibilities:
1.The roots are real and independent A, and A,

2.The roots are real and identical, A,
3.The roots are complex A =a i@
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1.Roots are real and distinct
yq =A™
Yo = AzeAZX
Therefore y, (x)= Aje™ +y, = Ae™* 6.21
2.Roots are real and identical
Ye(x)=(Ax+ Ay o™ -6.21

(Left as exercise to prove by substitution)
3.Roots are complex, A=a*iB

yc(X) _ A1e(a+i[3)x i Aze(a—iﬁ)x
=e¥ (A1e"’3X + Aze"ﬁ")
= e (B, cos Bx + B, sin Bx)

=e™Ccos(Bx + @)
where ¢ is a constant.
(Remember 1.4, harmonic function

acosy +bcosu = ccos(u+<p),c =+a’ +b2,tan(p = (_—bj)
a

Example 6.11

6.4.2 Finding the Particular Integral (Pl)
The form of the Pl depends on the form of f(x)

d? d
#+a1d—§+a2y:f(x)

Use the following rules:

1.1f f(x) = ae™ , try y,(x) = be™

2.If f(x) = a; cos ax + a, sinax (a; or a, could be zero), try
¥, (x) = by cos ax + b, sinax

3.0f f(x)=a, +a;x +a,x% +...+a,x" try yp(x) = b, +bx+byx?+...+b,x"

4.1f f(x) is a sum or product of any of the above, try y ,(x) as the most general sum or
product of the individual trial solutions.

5.1f the trial solution contains any terms already in the CF, multiply the trial Pl by x and
try again.

We then substitute the Pl into the full ODE to evaluate the constants.

The compete solution of the full ODE is the sum of the CF and PI.

Summary:
— Write down the auxiliary equation
— Find the CF containing 2 arbitrary constants
— Choose a trial form of the Pl depending on f(x)
— Check to see no terms are common in Pl and CF
— If terms are common multiply the Pl by x
— Substitute the Pl into the full ODE to evaluate the coefficients.
— Write down the full solution = CF + PI.
— Use any initial conditions to evaluate the constants.

Example 6.12

Next example is where the Pl has a term in the CF.
Example 6.13

40



PC 1071 — Mathematics for Physicists Semester 1

7. The Harmonic Oscillator
7.1 Unforced, Undamped Oscillator
In Simple Harmonic Motion (SHM), the restoring force is proportional to the displacement.
i.e. F=—kx or:
2
Adfigf::—kx 7.
dt
2 2
> Md—2X+kx:0 or d—2X+£x=0
at at m

.k
Common to write — = wo2

m
2

Therefore u+ a)ozx =0-72
dt?

Or ¥+w,> =0

Therefore thee auxiliary equation is:-
2+ a)02 =0

A =Zio,

x,(t)= eO(A1e’”’°t + Aze:""Ot)

or x,(t)= By cos w,t + B, sinw,t .

7.2 Now let’s add a forcing term — the forced oscillator
X+ m,°x =F(t)-7.3
F(t) is the forcing or driving term, and is time-dependant.
Let's use F(t)= F, cos wt .

Therefore % + w,?x = F, cos ot

The CFis x,(t)= Acosa,t + Bsinw,t

Let's use x,(t)=acoswt +bsinat

This is fine so long as @ # @, otherwise we must multiply the Pl by t.

Case 1, o # o,
X, (t)=acos at + bsin ot

Xp (t)= —awsin ot + b cos wt

%, (t) = —aw?® cos ot - bo® sinwt

Substitute into the ODE

—aw? cos ot — bw? sinat + w,’ (acos ot + bsinat) = F, cos at

a(woz - o® )COS wt + b(a)o2 - )sin ot = F, cos ot

F
~b=0a= °
2 2
0, —w
The complete general solution is:-

Fo

x(t):Acoswot+Bsinwot+(2—)coswt -7.4
2
0," —

Acosw,t +Bsinw,t > Free response

F
> e >1c0s wt > Forced response
ia)o - '
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Case 2, o = o,
Now we need to multiply the PI by t.
X, (t) = t{acos w,t + bsinw,t)

X, (t) = acos w,t + bsinw,t + t(— aw, sinw,t + ba, cos w,t)
X, (t) = —aw, sinw,t + bo, cos w,t —aw, sinw,t + ba, cos w,t + t(—aw02 cos w,t — bw,” sin a)ot)

= 2(- am, sinw,t + ba, cos w,t)+ t(— aw,’ cos wyt — ba,? sin a)ot)

Substituting into the ODE gives:-
F
a=0,b=

o

2w,
F
x,(t)= =—2-tsinw,t
p(0)= 5 tsino,
Therefore complete solution is:-

FO
@,

x(t):acosa)ot+bsina)ot+ sinw,t -7.5

(o}
acosw,t +bsinw,t > Free response

F, . .
2_sinw,t > Driven response
a)O

We therefore see that the second tem increases with time — theoretically to infinity.
In reality there will be some damping.

7.3 Damped oscillator — No forcing term
X(t)+ 2x(t)+ w,x = 0

dx
Dampin —
ping o p

Auxiliary equation is:
P2 +2+w,2 =0

— 2y +44y% - 4o’
Roots 4 = ! 4 ° =—}/i\l}/2—a)02

2

Three cases:-
1. 72 > a)oz - Roots are real and negative

2. 72 = a)oz - Roots are real, coincidental and equal to —y
3.7% < w,? - Roots are complex, 4 = —y +iyw,> - >

Case 1, y? > w,? - Heavy Damping

x,(t)= Ae Mt 4 ge%lt 7.7
i.e. there is no oscillation, the amplitude simply decays exponentially.

Case 2, y? = w,? - Critical Damping
The roots are coincident, real and equal to —y
Therefore x,(t)= (At +B)e™ -7.8
Again no oscillation, but depends on A and B.

e.g. x.(t)=(2t + 1)~
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x(t)

or x,(t)=(-5t+ 1)

x(t)

\/ t
Case 3: 2 < w,?

[ 2
Mg =7 Er? -,
= —yii\/a)oz —y?

Rememberif 1 =a +if
X (t)=e™(Acos st + Bsin fit)

S Xo(t) = e‘”(acos( @,° —yztj+Bsin( 0" —72tD
= e‘”Ccos(\/a)o2 -2t ¢j

Therefore the solution oscillates at frequency \la)oz — 72 andnot o, .
Also the amplitude decays exponentially.
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v
-

7.4 Damped, Forced Oscillator
(t)+ 2(t)+ w,2x(t) = F(t) = F, cos ot = RefF,e™ | - 7.10
This time we are going to find the particular integral using complex exponentials.
As always, we can use complex variables in place of our real ones, as long as we

remember to take the real part at the end.
Our ODE becomes:

X(t)+ 2:X(t) + o, X(t) = F, e
Where X(t) is a complex variable and x(t) = Re{X(t)}

Now our trial solution is X, (t)=Ce'™ , where C is a complex coefficient.
X, (t) = iaCe™
X, (t) = ~w?Ce™
Substitute into the ODE:
~ #%Ce™ +2jiwCe™ + w,?Ce™ = F,e™
C(— o® + 2yl + a)oz): Fs
F

o

C =
2yl + (woz - a)z)
Get into standard form by multiplying top and bottom by the complex conjugate >

-2yl + (woz - 0?

2 2 :
C- Fo((a)o - )—2;/(0/) _712
0)02 —0? | +4y%0?
Therefore our CF is

X (t): Fo((a)02 _wz)_ 27a’i)eia)t _ Fo((woz —a)z)—Z;/a)i)
P 2 2 2 2 2 2 2 2 2 9
(a)o - @ ) +47 w (a)o - ) +4)/ )

We want x, (t)= Re{xp (t)}

Xp(t):( &

(cos wt + i sin wt)

5 [(a)oz —a)z)cosa)t+2)/a)sina)t] -7.13

W, — a)z) +4y2%0?

Our complete solution is the sum of the CF and the PI.

Note all the CFs decay away with time — these are known as transients.
In the long term only the forced solution exists.

Back to X(t):

This is a harmonic function of the form:-

acosu + bsinu = ccos(u + ¢)

where ¢ =+a? + b2 P = arctan(— 2)
a
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02 —a)z)b=2}/a)
SC= \/(a)oz - w2)2 + 4y w?

xp(t) = Fo cos(wt + ¢) - 7.14

\/(a)oz - w? )2 + 47/20)2

where ¢ = arctan _22—7@ -7.15
wy° — 0*

)
I
e

When is the amplitude a maximum?
Max when (a)02 - a)2)2 +4y%w? is a minimum.

2
Let g(W) = (w02 - a)z) +4y%0° = a)o4 - 2a)02a)2 -0 +4y%0?

Differentiate and set to zero

dg_(a)) = —4(002@ +40° +8y%w =0
do

= o’ :w02—2;/2 -7.16

or = 1,6{)02 -2y

This is known as the resonance condition.
Remember y is the damping.

Note that without damping, resonance is when o = o, .

Substitute this resonance condition into 7.14 and the amplitude will be:-
7.14is x,(t) = Acos(wt + ¢)

F
Xp (t)= 2—02)1/2003(501‘ +¢)-7.17
/4
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—l2

¢ = arctan(a)

y>0

v

Semester 1
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