PC 1171 - Vectors, Fields and Matrices Semester 1

1. Vectors
1.1 Definition, Addition and Subtraction
As physicists we are concerned with objects which represent physical quantities.

Scalar function / field: T(x). This could tell us the temperature at position X. Itis
specified by a number. No direction is mentioned. E.g. Mass.

Vectors: Objects characterised by both a magnitude and direction. e.g. the relative
displacement of two points, P and Q. An example is velocity, which might be represented
as V. Other examples include Momentum and Angular Velocity.

PQ is the displacement vector from P to Q. The vector tells us that Q lies 7km
(magnitude) from P at a bearing of 20° (Direction)

Vector addition: if A denotes the displacement north by 3km and B the displacement east
by 4km, then we can say C = A + B. Clearly A+ B =B + A, although addition is
commutative. It is also clear that (A+B)+C = A+(B+C) forany A, B, and C.

We can define the negativity of a vector as

7

So we can introduce subtraction of vectors, obvious A+(-A)=0, or A-A=0 < 0 is a null
vector.

Find the property that is A(A + Q) = 1A+ AB (Nis a scalar).

i.e. addition is distributive.

It follows from rescaling the vectors.

We can solve numerous problems using this geometric effect:

e.g. a mass of 100kg is at the midpoint of the rope suspended as in the sketch. What is
the tension in the rope?

60°

K

100kg
i =r=| = I
w| = 100kg ~ 10°N

In equilibrium the sum of all the forces is zero.
T,+T,+w=0
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Hence [Ti| =[T, =[N| ~ 10°N

1.3 Components
So far we needed to draw a diagram in order to add or subtract vectors.

Seek an algebraic representation.
e.. any 2D vector can be expressed as a sum of two other vectors. Convenient to choose

“basic vectors” to be parallel to the co-ordinate axis.

y

Vi

V=Vii+V,j
V|cos6 =V,
V|sing =V,
then:

=1

iand j are base vectors and have unit length.

e.g.
y

tand = i
3
What is V in components?

V =3i+4] = (3,4)
This can be generalised to 3D > need a 3" basis basic vector parallel to the z-axis.

z

V=V,i+V, j+V,k =,V Vi)=Vic, +V,c, +Vscq
n.b. we just picked up a right-handed coordinate system (i.e. z-axis points “up”)
The magnitude of the vector is obtained by Pythagoras.
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|A| = VAx2 + Ay2

In 3D:
0] = Jsz + A2+ A2

It is also clear that:
A+B= (Ax +Bx)l'+(Ay +By)l+(Az +BZ)K

1.4 Unit Vectors
Vectors of magnitude 1 are called unit vectors (i.e. i, j, k)
e.g. to find a unit vector which is parallel to b(1,1,3)

b =11

5 (113) _i+j+3k

N TN T
1.5 Position Vectors

Consider a point P. We can represent the location of P relative to an origin O by
specifying its’ position vector.

Clearly
OP =xi+yj+zk

r=0p

Also |r = yx* + y? +2°

Relational positions are easy to compute.
e.g. consider 2 points P, and P, at ry and r,. What is their relative positions?

P>

0

PPy =ry—ry

PPy =ry—r,
This last result can be used to derive the vector equation of a line.
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n=ry+alry-r,)
A is some number. It varies from -~ to +« to generate all points.
ry and r, are any two points on the line.

Centre of Mass:

Given a system of particles of mass m4, my, ..., m, at positions ry, r», ..., r, the location of
the centre of mass is defined to be at:

R miry+myly, +...+myr,

my+my +...+m,

1.6 Scalar Product
A-B =|A|B]|cos &

This is the definition of the scalar product. A-B is a scalar.
It is often also called the “dot product”.

A-B=(Alcos 0)8] = (Blcos o)A

e.g. a force F acts on a particle. Calculate the work done by F when the particle is
displaced by an amount Ar.

E

Assume F is constant.

Clearly A-B=B-A

Notsoclear: A-(B+C)=A-B+A-C (Prove it!)
For parallel vectors A-B =|A|B
For perpendicular A-B =0

e.g. derive the cosine rule:
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But a-b = abcos(ﬂ - 6) =-—abcosd
Therefore c? = a + b? —2abcosd .

e.g. calculate A-B ifA=(1,2,3)and B = (-1,2,1)
A-B=i+2j+3k)-(-i+2j+k)
=i i+2i-j+i-k-2j-i+4

x

1-1+21~_—3[~5+65-1+25-5
ii=1

etc...

ij=0

efc...

So A-B=-1+4+3=6

This generalises easily:

ie.if A=Ai+A,j+Ak and B=B,i+B,j+B,k

then A-B=A,B, +A,B, +A,B,
This is a scalar quantity i.e. it doesn’t depend on the choice of coordinates.
eg. A,B, -A/B, +A,B, is not a scalar!

1.7 Equation of a Plane

/i
0 J

o

Can specify the plane uniquely by specifying a point in the plane (r,) and a vector normal
to the plane (n).

R-A=0

R=r-r,

We want an equation forr.
= (ﬁ_ro)'ézo

ie.|\r-A=r,-n

This is the desired equation.



PC 1171 - Vectors, Fields and Matrices Semester 1

n=ai+bj+ck

r=(xy.z)
Then rn=ax+by +cz=r,n

If

o \A#h

r, -n=r,cosa = distance of plane from origin = d.
So we can write:

ax+by+cz=d

Equivalent equation of plane.

e.g. find the equation of a plane with normal N = (1,2,3) passing through the point (—1,0,1).

How far is the plane from the origin?
Equation of a plane

r-n=d

ax+by+ca=d

If A=ai+bj+ck (nb: a® +b? +c? =1)

ﬁ=(1’2’3)
14
]~
. s_g_—1+3_ 2

X+2y+3z 2

a s

=>Xx+2y+3z=2

1.8 Vector Product
Definition: AxB = |A||B|sin6A

Use right-hand rule to work out which direction n goes in.
(Twisting anti-clockwise, up is 1)
Turn to get correct value.
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NB: AxB is a vector. n is perpendicular to A and B.
Also has a geometric interpretation:

B

N

A

Area of parallelogram = |A|h
But h =|B|sind

So area is = |AxB| .
|AxE| = |Ag]sin i
As n =1 this is not commutative!.

Note:
AxB = BXA
AxB = -BxA

and Ax(B +C)= AxB+ AxC
Note that AxB =0 for parallel vectors. (sin@ = 0)

e.g. simplify (a + b)x(1a + 1b) (A and y are scalars)
= ja’ + pab + Aab + ub®
= —Alaxb)+ ulaxb)

= (u— A)axb)

Let us try to figure out a formula for AxB in components.
AxB=(A,i+A, j+AkxB,i+B,j+B,k)
We will get things like:

AxB=AB, k+A,B, jxk+A,B, jxi+A,B, j— A,B,kxi + A,B, kxj

Collect components:
AxB=j(A,B, - A,B, )+ j(A,B, - AB,)+k(AB, -A,B,)

Another way to write this is a determinant:

Ik
AXB=|A, A, A,
B, B, B,

1) Select i and cover up column and row it’s in
2) Cross-multiply the 4 values which remain uncovered, i.e. A, B, —A,B,

3) Repeat for -j and k.

e.g.:
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B =(-121)

Show that AxB = (-4,-4,4)

AxB = [(Asz - Asz )+ l(Asz - Asz)+ K(AxBy - AyBx)
= i(2x1-3x2) + j(-1x3 = 1x1) + k(1x2 + 2x1)
=(2-6)i+(-3-1)j+(2+2k

= —4i—4j + 4k

A=(123)

Calculate AxB when A =(123) B =(-121)

-~
N I—.

W

k

AxB = 3

-1 2 1

=i(2-6)+j38-1)+k(2+2)
=-4i-4j+4k

=(~4,-44)

~

9 Applications of the Vector Product
Some examples from dynamics:
Torque 7 =rxF

@
M

=
’
’

0

|c| = |r|F|sin@ which is sensible.

T is into the paper

- tells us sense in which torque tends to induce rotation.
Also meet angular moment

L=rxP

(Angular momentum relative to some origin)

Key equation in rotational dynamics is z = % (See later)

F_dP
- dt

Vector product also appears in electricity and magnetism.
F =qVxB (F=qVB or F=BeV)

q = electric charge

V = velocity

B = magnetic field

e.g.:
A rigid body rotates about an axis through 0. with angular velocity w. Show that the linear

velocity v of a point P in the body with positionris v = rxw.
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W

R V is into paper

0

Body rotates about axis through 0 parallel to w (= angular velocity).
V| = Rlel

where R = radius of circle = |r|sin ¢

So |v| =|rxe)

From sketch we see that

vV = oxr

e.g. a particle of mass 1kg is rotating about the z-axis at 4 rad.s™ (i.e. w=(0,0,4)rad.s™) at
a fixed distance from 0 and at a fixed angle to the z-axis.

Z, W
m=1kg
S
6 /1
0
a) What is its’ velocity when it is at r(1,1,1) m?
i Jj Kk
v=oxr=0 0 4=-4i+4j=(-440)ms™
11 1
b) What is the angular momentum about 0 when it is at this point?
L=rxP
P=mv =(-440)
ik
L=[1 1 1=(-4i-4j+8k
-4 40

n.b. L is not parallel to w (of L=lw). L,=l,w, is true...)

Note: we just evaluated two vector products i.e.:-

L = mrx(rxe)

There is a quicker way to evaluate such a “triple vector product”.

1.10 Triple Vector Product
Identity: | Ax(BxC) = (A-C)B - (A - BC|. Proof?
What is (AxBJxC? = -Cx(AxB)=—(C -BJA+(C-A)B
e.g. we just worked out




Semester 1

PC 1171 - Vectors, Fields and Matrices

mrx(exr)=-m((r - o) - (r - r)o]

'\
Il

r=011)m
o =(004)ad.s™
m = 1kg
L =-4(111)+(3)0,04) = (- 4-4,8 units
Which is as above.
1.11 Scalar Triple Product
We also compute (AxB)-C € Scalar Triple Product.
Aside > (Ax@)-g is a third way to multiply by three vectors. It is a vector, and is easy to

compute.
Question: is Ax(@ : Q) interesting? It is meaningless, as B dot C is a scalar, and you can'’t

do a cross product with a scalar.
e
,/,l L7
1 4 1
L0 P ]
. N . ]
e 1 e 1
s 1 ’ 1
e 1 e ]
L7 ' ’, ]
. 1 e 1
L7 | , ]
, ] e ]
——————————— +-—-=-=-=-=-=--=--7 1
1 i 1
1. 9% ' f '
1 1
AXE ' , '
L= - = Fem——— - J
1 e
(p B ! 4
=2 h L’
.
1 i
1 ’
1 e
1 '
1 i
0 ",
1,7

The above is a box formed by A, B and C.
Parallelepiped (all forces parallel in pairs)
Volume of box = (area of base)x(perpendicular height) = |AxB|C cos ¢ = [(AxB)- C|

(AxB)-C =|AxB]C|cos

This interpretation allows us to see that:
(AxB)-C = A-(BxC) = B-(CxA)
A-(BxC)=-A-(CxBletc...

e.g show that:
c, C, C,
(AXQ)'Q:AX Ay A,
B, B, B,
-C,(A,B,-A,B,)+C,(A,B, -AB,)+C,(AB, —A,B,)
i j ok
AB=|A, A, Al-lci+C,j+C,k)
B, B, B,
L —AB, )+ JCyi+.)

(ii(A,B, ~A,B,)=C,(A,B, -A,B,)
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1.12 Intersecting Planes
e.g. find the point of intersection of the 3 planes:
3x+3y+2z=3-(1)
x+y+3z=4-(2)
X+y+z=1-(3)
Can solve by “brute force”:
Using (3): z=1-x-y
xX+y+3-3x-3y=4
Into (2): —2x -2y =1

-1-2x 1
y:—:—x

2 2

Put these into (1): 3x+3[—x—%j+2(1—x—(—x—%jj—%+2+1 # 3l

There is no solution! The planes do not meet in a point.
ny=3i+3j+2k

n,=i+j+3k

ng=i+j+k

Must be in this “Toblerone” configuration because n+, n, and n3 are not parallel.
When do 3 planes not meet in a point?
Looking “end on”

Ny nq

n3

The other cases which have no solution also have the property that the normal vectors lie
in a plane.
I. 3 parallel planes
/A\\

IA\
/A\
ny=n, =N,
No solution at all.
II. 2 planes the same:

lll. 3 planes the same.

All points are solutions to the original equation.
IV. 2 parallel, 1 inclined - no solution.

\
\

11
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V. 2 coincidental, 1 inclined. Solution is a line.

\

. Sg
VIl. Toblerone = no solution.

S

All have the property that normals lie in the plane of the blackboard / page.
2 Q1(ﬂz 'ﬂs): 0
(n, -n,) is the vector out of (or into) the plane. i.e. 90° to n;.
So we could have checked to see if a solution existed by calculating:
i oK 33 2
n,-(n,xny)=(332)-1 1 3/=[1 1 3/=0 therefore no unique solution.
1111 1 11

~\

.14 Differentiation of Vectors

It is straight forward to differentiate vectors. Generally if A(s) is a vector which depends
on s we can define:

dA  lim [A(s+As)-A(s)
ds  As > 0{ As }
In components this reduces to:
dA dA, dAy j+ dA, K
ds ds - ds = ds ~
NB: i, j and k are fixed.

e.g.-

V= 9 _ %i +— dy Jj+ Ek

T odt dtT dt= dt~

is the velocity vector for a particle at position r = (x, Y, z).

Newton’s Second Law becomes:

F - dkat dPadt

p_ mdr mdr _

T ar v

Clearly 1(1_4+B):ﬂ+£ and M=/1ﬂ+Ad—/1.
ds - ds ds ds ds ~—ds

12
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d dB dA
ds(_ _) —ds = s
i(AxE):AxE_}_%Xg
ds ds ds

(Exercise: prove these)
Note that the order matters in vector products.

e.g. calculate the velocity and acceleration for a body whose position is
r = (Rcos wt,Rsinwt,0) (R, w are positive constants)

y

/ )
ﬂwt «

We expect:
v =R
vr=0

o] = °R

a=-o’RF

r is the unit vector pointing radially outwards.

v= a _ f = R(- wsinot,wcos ot,0)

a=—==F-= R(— w? cos wt,—w? sin a)t,O): ~w?R(cos at,sin wt,0) = ~w’RF = -w®r

eg. L=rxP
Basic equation of rotational dynamics is:

dL

— = nxF

o/ S

Derive this for a particle at position r and momentum P.
dL _d(xP) _dr
dt dt dt —
S far basis vectors have been fixed — sometimes it is useful to use a moving basis (!)

+rx£=er
D =%

e.g. plane polar cords:

Semester 1

Consider a particle moving in a plane. Its’ position at time t is (r,8). Can use r and é as

basis vectors.

13
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0.f¢
r=rf
dr dr., _dr
dt t~ t

=

1~>

1~>

1~

AF = |F|A06 = AOO

So:

dr _ lim (A_fj _d9,

at At - 0\ dt at —

f-ii

Hence

F = FF +r68 | Velocity in plane polar coordinates.

e.g. uniform circular motion:
F=rfb —"v = ro"
accel :F =FF+rf+rr+r0+rbo+rbo

é is nasty!

Look back at diagram:

Semester 1

14
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£ =|gla6(-7)= 6 = -6
Substitute into 7 gives:
F=Fr+ r(99)+ rHH + r¢90 r¢9(¢9¢9)
r= (r—rH )£+ r9+2r6')g

For uniform circular motion, r = —ré’zf

1.14 Rotations

Semester 1

We might want to convert from one basis (i, j, k) to another (i, |, k’). How do we do it?

e.g. consider 2D case:

\
N
N
N

cos0

i'=cos @i + sin Hj

J'=—sinbi +cosdj

V=V,i+V,j=V,'I'tV,'J'
Vi'=V.i'=V,i-i+V,j-i'=V,cosfd+V, sind
V,'=V.-j'=V,i-j+V, - j'=-V,sind+V, cosd

e.g. show that A- B is invariant under rotation of coordinate axis (Stick to 2D)

A-B=AB,+A,B, =A'B,'+A, B,

= (AX cosé + AyanXBX cosd + B, sin 9)+ (— Ay sind+ A, cos HX— B, sind + B, cos 9)

= AxBx + AyBy = AE = A"E'

15
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So A-B is a scalar.
eg. A,B, +2A,B, # A,'B,'+2A,'B,’
So A,B, +2A,B, is not a scalar.

The generalisation to 3D is in principle straight forward.
Need 3 angles to specify a general rotation.

z Axis of Rotation

y

0
\ s

0 and @ specify axis of rotation.
Y specifies angle of rotation about that axis.
Quite a bit more involved than the 2D case.

There is a neat way to express 2D rotations:

V') [cos@ sing |V,
V,'] (~sing cosd)V,
This is a “rotational axis™. V'= RV
Matrices are the subject of Section 4 of the course.

16
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2. Determinants
2.1 Linear Equations

In physics we often encounter quantities which depend linearly on several others.
e.g. rotations in 2D:
X'=xcosé@+ysind
“x’ is a combination of x and y”
e.g. Hooke’s Law
“F=-kx”
Consider the case of 2 masses connected by springs.

Let F.= Force on left hand mass (Convention, F >0 if force acts to right)
Let F, = Force on right hand mass.

Fo =—kxqy + k(x2 - x1)

F. =—-kx, —l(x1 —x2)

These are linear equations in x4 and Xx,.

In general (i.e. for unequal masses and springs) we would have:
Fe = —(K11X1 + K12X2)

F, = —(K21X1 + K22X2)

In our case:
Ky =2k
K, = -k
Ky =k
Ky =2k

We can write these equations as:
F =-Kx < Matrix Equation

(7]

=7 F
K:(K‘H K12j
= Ky Ky
K:

X4

X2
Now let’s ask the following question:
Start from equilibrium and apply external forces F1 and F; to the left and right masses
respectively. How far do the masses move before they again come to rest?

In static equilibrium, the external forces must balance those from Hooke’s law, i.e.
F1+F2:O,FC+F,-:0

Equivalently
Fext +F =0

E
Fext :(F;J

F .
is a column vector.
Fa

> Fext 55

17
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Can't solve for x just by dividing by K since it is a matrix.
i.e. we must solve:

Ki1xq + Kipxa = F = (1)

Fa1x1 + KopXo = F; —(2)

Solving gives:

s, = KaFi=kiFo [: 2F, +F2]
K11K22 _K12K21 3k

s, = _KuuFa = KaiF, (: 2F, +F1]
K11K 2o = K12K; 3k

Solution exists providing the denominator is not zero. i.e. K;1K,, —K1,Ky1 #0.

But Ky1Kyy — KoKy = K K| per - ‘K‘
Ky Kz = =

This is reminiscent of the intersecting planes problem.
i.e.
3x+3y+2z=3
X+y+3z=4
X+y+z=1

3 3 2
There is a unique solutionif [1 1 3| =0.

111

2.2 Determinants
Let’s start with the general rule for evaluating determinants:

aqy a2 agg

8y A3 a1 3 a1 Ay
Gy Qg Ap3|=ayy —ai +aq3
A3y ds3 A1 AQs3 dz1 Qs
A3y Qdszp Adsg
. la a
The cofactor of a4 is 2 "2 , etc.
a3y Aasz
The sign of the cofactor is determined by the pattern:
+ - 4+ -
- 4+ -+
etc.
+ - 4+ -
- 4+ -+

What is the cofactor of a,4?

Qi a3

dzp das3
Can choose ANY row or column to evaluate a determinant.

e.g. suppose A is the element of a matrix at row i and column j, then detA (i.e. the
determinant of A;) is:

det A = a,-1C,-1 + a,-ZC,-z +...+ amCm .
i labels any row.
j is any column.

e.g. Calculate the determinant of the matrix:

1 3 1
M=|10 2
Col2 1 -

18
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Choose the first row:

detM=10 2 —31 2 +11 0=—2+15+1=14
= 11 -1 2 -1 2 1

Do it again for the second row:

detM:—13 1 +O1 ! —21 3:4+10=14
= 1 -1 2 -1 2 1

2.3 Uses of Determinants
We have seen 2 examples (Spring and planes) of uses already.
In general we can test to see if a system of linear equations has a solution by evaluating
the appropriate determinant.

N
D aiX; =Y
Jj=1

i=12,...,n
This is a set of linear equations which we might want to solve for the x;.
e.g. pick n=2
11Xq + 812X = Y4
Ay Xq1+anpXy; =Y,
These n equations have a solution if:
a1 812 a3 au
deté =|8pq @dpp A8pz Adpyq o F 0

If detA= 0 then either the equations are inconsistent or there is an infinity of solutions.
e.g. does

1 3 0 1| x4

1. 00 2|x,

1
2
-1 2 2 4|x; 3
2 10 —1ix, 5
have a unique solution?

1 3 0 1

Will if ! 0 2 =0=28
-1 2 4
2 10 -1

19
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3. Fields
3.1 Introduction
A field is used to describe a physical quantity whose value depends upon position. If the
value is just a number then it is a scalar field. If it is a vector then it is a vector field.
e.g. classify the following:
— Temperature in this room — scalar field. T(r)
— Gravitational field in this room — vector field. g(r)
— Magnetic field around a bar magnet — vector field. B(r)

3.2 Functions of several variables
Functions of only one variable are pretty rare in physics. e.g. T(x,y,z), U(p,V) etc...
Functions of two variables can be represented as surfaces in 3 dimensions, or a contour
map (e.g. Ordnance Survey or a weather map — isobars).

Hillside

Line of
constant Z

3.3 Partial Derivatives
Rates of change are crucial in physics. Need to understand how to do calculus with
functions of >1 variable.

For z=f(x,y):
Define (ifj _ Lim {f(x+5x,y)—f(x,y)}
ox y ox —>0 [0)'4
f(x,y) f(x+0x,y)
y[r-—-- . X
X x+'6x

Clearly (2—fj tells us the rate of change of f(x,y) in the x-direction.
X
y

Define (6—f] Lim {f(x’yJ“‘S}’)—f(X,y)

oy), oy -0 o
YVl S f(x,y+3y)
Y -1 E f(x,y)
:

Clearly (S—f) tells us the rate of change of f(x,y) in the y-direction.
Y x

20
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e.g. Given f(x,y)=x2+xy+4y2, calculate the slope of f(x,y) at a general point
a) in the x-direction;
b) in the y-direction.

a) In the x-direction the slope is:

LA

Small y reminds us to keep y fixed.
“Partial df by dx”
f, is an alternative notation.

b) In the y-direction the slope is:
of
— | =8y +xif
[6ij vexty)
Higher derivatives can be computed

= oox | Lox y ox?
y y

2
In our case (a—g =2="1,,
y

ox
2
Similarly (a—ZJ =8=f1,
oy ),
2
Also - (a—fJ —i(x+8y)y g =fy
ox|\oy ), ox oxoy
2
i(a_fj __(2x+y)X:1:af—yX
oy |\ ox y oyox
X
o %  0%f
" Oyox  Oxoy

This is generally true, i.e. order of differentiation is unimportant.

e.g. for 1 mole of an ideal gas pV=RT.

What are ﬂj and ﬂj ?
oV o y
oT 0 0 14
S| =oTev)| = B =2
oV p oV o oV R p R

oary _ofpvy)y _V
o), p\R), R

3.4 Total Differentials

How does f(x,y) change as we go from (x,y) to (x + &x,y + &y)?
Recall, for a function of 1 variable g(x)

69 = glx +06x)-g(x) ~ Z—géx (Taylor’s theorem)
X
5f ~ (a_f] o + [a—f) 5y
ox y ay X
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In the limit dx,0x — 0 we can write |df = a—fdx +a—fdy

ox oy
df is called the “total differential” of f [NB generalizes to 3 dimensions
df = a—fdx+a—fdy +6—fdz]

ox oy 0z

N of . .
v implies | — i.e. all other values remain constant.
y X,z

e.g. f(x,y)=x’-xy+4y*. Estimate f(1.00001,1.00002)
f(1,1)=4 < wanted more accurately.

Of = (2x — y )ox + (—x + 8y oy
ox =107°

oy =2x107°

of =107° +14x107° =1.5x107*

f(1.00001,1.00002) ~ 4.00015

e.g. Suppose we walk along a path (x(t), y(t), z(t)) where z(t) is height above sea level.
What is the rate at which we gain height?

_ az(t)
dt
What if you were given z(x,y) and x(t) and y(t)?

Can substitute for x(t) and y(t) into z(x,y) then do dfj(tt)

dz_ozadx ozdy
dat oxdt oy dt
We can work this out without substituting.

df df dx

Generalization of the chain rule — = — —
dt dx dt

Suppose we now ask for the change in altitude for an infinitesimal displacement in the x-

direction along the path.
0z =(rate of change of altitude with x) ox

% < it is not this since y varies as we move along the path!
X

dz_ozdx ozdy
dx oxdx oy dx

dz_oz ozdy
dx oOx 0y dx
View from above:

< “total derivative of z with respect to x”
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ox 0z dy
Z(x+Ox,y+oy)~ z(X,y ) +| — + ——— |Ox
/\ZW< y+By)= 2(x.y) [ay aydx]

Z(x+0x,y) =~ z(x,y) + a—xéx
oy

bt

X
X  X+Ox

e.g. Suppose f(x,y) is such that x=x(u,v) and y=y(u,v). What is (S—fj ?
v u

[Again, it is possible to substitute back.]

But much easier (usually) is to do:

df :a—fdx+a—fdy

ox oy
oy _af(ax)  of (oy
ov), ox\ov), oy\ov),

I
f= mo (@)
all.changes.inf itesimal

3.5 Stationary Points
Are points where “all slopes vanish”.

i.e. for g(x,y) stationary points are at 9 _9% _ 0
ox oy
See handout for test of nature. For a function of 2 variables there is a new type of turning

point. It is called a “saddle point”.

Stationary point

3.6 Vector Fields
How would you sketch the earth’s gravitational field?

-Gmg .
g(r)= rZEC
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Use length of the arrow to specify strength of field.

e.g. Sketch the field A(r)=1i

R e
e

e.g. Sketch C(r) =i+]

G iiish40048
W i1iih0440448
272002277

e.g. sketch D(r) = -yi

%
e_
< <«
< <
> > >
—S =

Semester 1
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e.g. Sketch E(r) = %(X[—,VD

S
vV

3.7 Gradient Vector
Typically we will want the rate of change of a function in some particular direction. (ie. not

just a—f etc)
15).4
Start off in 2 dimensions.

f(x.y).

Patch of the
surface

__________ @ZQ I fxy)

N
N
N

N »
»

what is the rate of change of f(x,y) in the ¢ direction?

We want:
af| _ lim | f(r +d6s) - f(r)
ds|; s —>0 s
af| _of
ds|; ox
af| _of
dsj oy
df:a—fdx+a—fdy
15) 0
of| _of dx| | of dy
dsg 6xdsg 6ydsg
dy .
!
Q S
dsu .
B dyj
LY
dxi as -’
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- dx dy| .
U=—i+— j
- dS&_ dSﬁ—
df .of . Of |
So—| =|i—+j—|u
das|; Uox =oy)™

[i— + jS—fJ is the gradient vector.
-oy

Directional derivative can be written as g—f = Vf.u = slope of the function f in the
Sla
direction g .
\%i

Vf.u =| Vf | cos 6

1<

Hence Vf points in the “steepest uphill direction” and |Zf| is the slope in that direction.
It is also easy to show that Vf evaluated at some point is perpendicular to the contour

lines f(r)=constant at that point.
Proof:

f(r)=const.

e.g. f(r)=x+y
Sketch the field lines of Vf and the contours of constant f. x+y=C - y=C-x
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v
) GNG)
Vf=i+]

e.g. Find the gradient vector of the scalar field g(r) = %(x2 + y2 {z %rz}

Sketch Vg and the contour lines.

vi=297,%9;
- Ox~ oy-
Vf =xi+y]
=r

Summarize properties of Vf:

— Slope in direction 4 is Z—f =Vfu

Slg

— Vf points steepest uphill
— |Vf| slope in steepest uphill direction.

— Vf is normal to surfaces of constant f.

NB: All these statements refer to a particular point in space.
A Ly
— ox~ oy~ o0z~

Potential energy is a scalar function U(r)
e.g. uniform gravitational field U(r)=mgz
Feel the effect of the gravitational field as a force F.

F=-mgk
In general: F(r)=-VU(r)

In this case F = —ﬂf—ﬂ]—ﬂé = —mg@

ox oy - oz

e.g. The PE of a particle at some point r is:

u(r) = %

What is the force acting on this particle at point r?

Foyyo Uj U oUg
- = ox~ oy=- o0z~
oU dUor a x

X drox fZr
Similarly for ay and ﬂ
oy 0z
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ax

ax ~ ax ~
ZF=—-——i-—j-—k
— r3— r3_ r3—
a 2 ~ ~
F=——(xi +yj+zk)
f'3 =z
a a .
F=——r=—-——r

This is the 3D generalization of Coulomb’s Law: 1 potential > iz via F =-VU
r r

Exercise:
Find the gradient of u(r)=3x-2y -z
Vu=3i-2j-k

3.8 Changing variables
e.g. Supposing you are given a function f(x, y) and decide that you want to work in Polar

coordinates (rather than Cartesian)

i.e.
(x,y)
0
X =rcosf
y =rsin6

Might want (e.g.)

of

or ) g
Can get it by substituting back or can use chain rule as before.
Chain rule tells us that:

oy _(af) (ax) L (of) (&

or)e \ox),\or)g \0y ) \0r),
Can calculate o and o directly from f(x,y)
oX oy

(a—xj =cosb
or Jg
(8_yj =sin@
or )

May also need (for other derivatives e.g. o )

06
(6—)() =-rsinf
08 ),

& =rcosf
08 ),
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Could go “the other way”, i.e. from a function of (r,8). Then we might need [gj
X

%), (5.5
ox), \ey ), \ay),
a9 _ogor o900
O0X Or ox 00 ox

X =rcos@
y =rsinf

Let’s evaluate them.

(ﬂj Need to write r(x,y)
6 y

X

0(x,y) = arctan(iJ
y

(@] =~ 9 | arctan X || = 2X
ox), ox y r2
Note:

(arj 1
—_— i —_—
ox), " (o

or Jg

Because different variables are being held fixed.

%), 7=
" (3

or y
e.g. f(x,y)=xy

Evaluate % (Implied that r is fixed).

of _of ox  of oy
08 o0x 06 oy o6

a—f:yrsin9+xrcose
00

6_f =—r?sin®0+rcos?6 = r2(0082 0 —sin? 6)

0
X =rcos@
y =rsin@

y
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check by substitution.

f=xy=r?sinBcosO
o _ rz(cos2 0 — sin? 9)
06

How do we compute the gradient in polar coordinates?

6 \ 7

Given g(r,8), whatis Vg ?

Vg = 8—gf+a—gé Tempting, but wrong.
- or 00~

To derive it properly we’'ll consider the directional derivative Vg.u =

We know thatVg = Ar + BQ. Goal is to figure out A and B.

~Nrde
uds|

Lodr

uds = drf + rd6f

.~ ar . do -
u=—r+r—=~0
- ds”™ ds —
So
. dg
Vg.u =—
+94 ds|;
LHS is Aﬂ+Brﬁ
ds ds

But we can use the chain rule to simplify RHS.
dg = a—gdr + a—gde
dr 06

.99 _cgdr 0gd8 _,dr p do

) = — +
ds drds 00 ds ds ds

]
ar 00

Hence

- or~ r o8~

e.g. Vr =r from above.

ag

ds|;’

Semester 1
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zi+1j+1k=Vr=i(x2+y2+22)r'+...= i+1j+£k=£=f
ox~ oy=- 0z— T  0Ox . h = r- r -

e.g. Coulomb’s law U = _g , a constant.
r

Fow-Mp__ 2
- - or~ r?

1=~

3.9 Line Integrals
How do you calculate the length of a curve in 3 dimensions?

dl =dxi+dyj+dzk

z
\j\B
A
y
X
Length of curve from Ato B = fim Yol = IBdl = jdl
0l — 0 ,pits A c

(C denotes the curve from A to B)

ol = (o) +(dy)? + () = dx\/1 " (Z_yjz ’ (%)2

X

dy\? (dz)’
So length :I:de 1+[d—yj +(d—j
A X X

e.g. Calculate the length of the curve defined by y(X)O: cosh x as x varies from 0 to
Z =
y coshx
X
0 b
b

Length = I:dX\/'l +sinh? x = j:dx coshx = [sinh x]g =sinhb

Curve may be defined parametrically, i.e. x = x(s)y = y(s)z = z(s) (eg. s could be time)
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al = \/dx2 +dy? +dz?

sg 2 2 2
[di = [ds o)Ay (e
c s ds ds ds

A

Example: Calculate the mass of a circular hoop of radius a whose mass per unit length
p(6)=6

/ %\32;”, a
N

dl = (dx)2 + (dy)2

2
[ dio=| dxp(O)‘/1 +[Z_};J = horrible

dlp = mass of element

[ do=] d@p(ﬁ)‘/(%f + (%jz

X = acose,.'.ﬁz —asine,d—y =acosd
ado do

27
27 27
Idlp=j0 do.ova? sin2 0 + a2 cosze=ajo 49d¢9=aB¢92} =27%a
0

dl = ad6
.. Mass = J dip(6) = J~02rr ad6o = 2rr?a

3.10 Line Integrals Involving vector fields
Example: Write down a formula for the work done by a force E(g) which acts on a
particle that moves from A to B along some curve.

B
E(r)

dr

dW = work done by F as particle moves from r to r+dr.
Total work done by F = [ W

dW = Fdr

Therefore Total Work = JfE.dg

Semester 1
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Example: What is the work done by F = —kr in going from (0,0) to (1,1)
a)along the curve y = x3
W =[ (- kr)axi + dy )
r=xi+yj
dr = dxi +_dyi'
W= —kf (xdx + ydy) = —kU; xdx + I; ydyj =-K

Alternative way is to write everything in terms of either x or y.
Since y=x*:

I dW = —k.[ (xdx + x3d(x3))

d(x3): 3x2%dx

W = —k| (xcix + 3xdx) = k[ [x + 3x® Jix =~k
b)along the path shown in the figure.

Y B
1 ______________ 'E( A‘D'
: X
A\ 1 2C

W = —kj (xdx + ydy)

How do we handle the limits?
Need to consider each of the 3 parts of the path separately.
i.e. W = WAC + WCD + WDA

Wiyc = —k.[ (xdx +ydy)
ydy=0 since y=0
Wi = k[ xdx = -2k

Wep = —kf (xdx + ydy)
x=2, therefore dx=0

1 1
Wep = k|, ydy = —Ek

Wpg = —kj (xdx + ydy)
y=1, therefore dy=0

: 1, -k
Wpg = —k|[, xdx = —k{Ex } = 7[1—4]: Zk

So W=-k as before....
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Example: Calculate the integral de[ where C is a circle of radius a centred on the
c

B-y.x)

I'2

/C

%

origin and B =

(B = constant)

y

X =acosf
y =asinf
dx = —asin6do

dy = acos 6d6
dl = adeé = a(— sinOi + cos el)de

2
Bdl = ﬁz(a2 sin? 6 + a? cos? e)de = @de = Bdo
r r

[Bdi = B[ d6 = 2np
(o}

Quick way
ré
B=88—
Bdl = [ Bd6 = 2mp
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4. Matrices
4.1 Introduction
We already met matrices.
Example: linear equations

n
yi = zaUXJ,L = 1,2,3,..,m
Jj=1

[y1 = a”X/ +a/2X2 +...+a1an,etC...]
Can be written y = Ax where

a11 a12 rE a1n

a a ... a
R

m 8mz2 - 8mp

(An (mxn) matrix)
Matrices are used

1.In quantum mechanics

2.To describe symmetry
Matrix algebra is like vector algebra for addition and subtraction.
i.e. é+§ =g Cj = aj +b,-j

10 13 2 3
e.g. + =
2 1 4 1 6 2
4.2 Matrix Multiplication
As an example, suppose

Z:ELQ:(X1,X2,X3’---axp)x=(Y1,Y2,Y3,---7yn))
So B is an nxp matrix

and g:éz,(g:(z1,zz,z3,...,zm))

A is a mxn matrix.

Whatis Cin z=Cx?

=4y
- ABx
~C=4B

But what does it mean?
In components

n p
Z,‘ = za,kZbijj
k=1 j=1

p
Zbkj i =Yk
=

k=1

n

(Zi = zaik)/kJ

n
SO C’/ = Za,-kbkj

k=1
Let's write C out explicitly.
Ci1 = ay4byq + 81291 + 43031 +... + @4, b
Cio = ay1byy +agpbyy +ayzbsy +...+ @1 by

ayy app by by
@y ayp | by by .. :(a11b11+a12b21+a13b31+"'+a1nbn1)
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The cell in C is the row in A times the column in B where the row and column meet at the

cellin C.

NB: Multiplication only defined if the number of rows in B is equal to the number of

columns in A.

e.g.
A1 2
=2 -1
s (12
= |3 4

2x1-1x3 2x2-1x4 -1 0
A IX1+2x2 1x2-1x2 _ 5 0 . AB
3x1+4x2 3x2-4x1 11 2) ==

Multiplication is:
non-commutative

associative: @E = é(g_g)

Distributive: A(B+C)= AB+ AC

_(1x1+2x3 1x2+2x4j_(7 10}

e.g. which matrix acts on a vector to give the same vector?
1 0 0) x4 X4
0 1 0|x5|=]|x5
0 0 1)x3 X3

This is the unit matrix 6; =1 (1 is a stylised 1)

1=1.3=))

1=0.i # j)

e.g. useful in quantum mechanics is the commutator of two matrices, A and B

AB-8A=(46]

4.3 Transpose

Transpose is defined to be the matrix which is obtained by swapping rows and columns.

e.g.
A~ 12 3
= |4 5 6

AT =

W N -
o O b~

In component notation:
T

e.g. transpose of a “column vector” is a “row vector”.
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Y1

(x; Xz{ jZ X1Y1+X2)2
Y2

[Whatis xy' ?]

[X1 j(h Y2)= [X1y1 X1y2J - Tenser product
X2Y1 X3Y2

(CT)/'j = (AikBkj )T = AjkBki = Ale-'Bi-ll; = BI“’/;AIZ}
[If indices are repeated then summation implied]

4.4 Inverse
We have met Ax =y .

Let us introduce the matrix
A" suchthat A'A =1

AAx=ATy

§‘1 does NOT always exist.

How do we find 5 ?

We use the result

Zn:a,.jckj = (det £)5fk
=

C is the co-factor (k") of A

Proof:
Consider i=k, 6, =1

n

ZaijC,j =det A < definition of determinant.
J=1 B

a1 812 Aag

@y @y axp|=detA

431 Q43 As3

Forany i
a a a,, a

Cip = 22 Q3 Cpp = - 21 923 4o
A3z Ads3 31 ds3

i.e. just the definition of det A

Now consider i#k, §; =0

n

j=1
LHS is just the determinant of a matrix with 2 equivalent rows which we earlier saw to
be zero.
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e.g. ifi=1, k=2. (n=3 case)
11 812 a3
a11Cyq + 81205 +a13Co3 =|ayy a2 ay3
831 8z ass
811 812 43
A=lay ay axp
831 83 Ads3
Hence:

8,6, = (detAp,
j=1

ACT = (det Al

Inverse = “transpose of the matrix of cofactors (divided by the determinant)”
NB: Inverse does not exist if det A =0 “singular matrix”.

Example: Find the inverse of

2y

2
Check
(1 2}(—32 11]_ -2+3 1-2x— _(1 Oj
3 4 2 2 —6+4xg 3—% 01
13 1
A=[1 0 2
2 1 -1
detA=14
-2 5 1
C=|4 -3 5
6 -1 -3

Semester 1
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(248
é—gﬁ 5 -3 -1
1 5 -3

4.5 Special Matrices
Symmetric:
Has to be symmetric about the diagonal.

[
>
-

A *)T _ Adagger.symbol )

I> ="I>
I

is hermitian. A%99¢r-symbol s the hermitian conjugate.
Orthogonal

AT _ A_1
ie. AAT =1

cosd sind

) ! is orthogonal.

—sin@ cosd

eg. v v=’=vy
V4

v'=Rv

(Orthogonal matrix)

viv'=v' v—(_v) (_v) v R Rv—v v

- Length of v is invariant under an orthogonal transformation.

If A%99" A =1
A is unitary.

4.6 Eigenvalues and Eigenvectors

Back to system of masses and strings to look at dynamics.

Recall

Fi =—kxq + k(x2 — X4 ) = —2Kx4 + kx5
Fy = k(x; — X5 ) — kxy = kx; — 2kx,
i.e.:

Fi) (-2k Kk )\ xq

AL a2

by Newton’s 2" law

e

Semester 1
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Generally motion is complicated. But we can look for solutions of definite frequency
(“normal modes”).
Try to find solutions of the form x,(t) = X, cos at, x,(t) = X, cos wt (X1, X, constants)

-2k Kk X1coswt_m—X1a)zcoswt
k —2k)X,cosawt) |- X,w?cosot

2k —k\ X, of X4
=M

-k 2k )\ X, X,

Can write as:

KX =mao®X

X,
X
K - 2k -k
= |-k 2k
This is an EIGENVALUE equation.

X is the eigenvector, while mw? is the eigenvalue.
Let’s solve the general case.

I
I

Ax =X
where A is a number.
(A-atk=0

Homogenous linear equation.
For interesting (not unique) solutions we require det(é - /11) < Gives us the eigenvalues,

Ay Aoy Ag, oeny A (if é is a NxN matrix)
det(é - /11);& 0 leads to unique but trivial solution x=0.

For each eigenvalue A; we need the corresponding vector X;. i.e. we must solve
A-4)x; =0

X, is called an EIGENVECTOR. Note: since RHS X is defined only up to an overall
factor.

6
e.g..A=
i

_2 j - find the eigenvalues and eigenvectors ofé.

6-4 -1
To get eigenvalues we must solve det(é - /L;I) =0.ie. [ 1 2 /J =0

6-1)2-4)-1=0
A=4+45
Eigenvalues are A, =4—\/§,/12 =4+45.

Check: “sum of eigenvalues = trace of matrix”
Add the A up, and check that they equal to the diagonal elements of the matrix (i.e. 6+2 in
A.

To get eigenvector corresponding to A4, (é -4 1)K1 =0
-1 2-2,)\b) 0
b
x, =[] =5 **|b +0)
b 1
sl
-1 -2+45)b) (0O

Using the first equation:
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+vBh-b=0
<[ 5

a can be anything i.e. norm of X; is not fixed.

1
X, =
Note, could get X4 from the 2 equationi.e. —a+ (— 2+ x/EJb =0 - it givees the same
answer.

RIS 1 e VW

c
Hame@—Jgk—d:O:xxz=&@_¢gﬂ
Can check:

Substitute back in:
Axy = A X,

R R ec RN

e.g. calculate the eigenvalues and eigenvectors of:

230
B={3 2 0
~ o o 1
Want Bx = Ax , i.e. @—l])g =0
To get A
2-1 3 0
3 2-1 0 :0=‘2_’1 3 k-z}:h-zf—gh—ﬂzo
0 0 1-2 3204
Solutions:
A =215 < Eigenvalues.
Check works. (5=5)
To get eigenvectors:
Ay =1
B~ 41X, =0
3 3 0)a 0
33 0|»b 0
0 0 2)c 0
a
Let X, =|b
c
Therefore a=-b and ¢ =0
S:
a
X;=|-a
0

Unit eigenvectors:
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0=0
- C can be anything!
a=b=0
0
X, =

Xzz

-~ oo’0o

=5
@"11])K1:0

-3 3 0 \a 0
3 -3 0 |b|=|0
0 0 -4)c 0
-3a+3b=0
3a-3b=0

—-4c=0

These are all orthogonal.
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4.7 Real Symmetric Matrices
Note that for both A and B in the previous exams

(a) Eigenvalues were REAL.

(b) Eigenvectors were ORTHOGONAL (e.g. )_?:KZ =0

(a) and (b) occurred because é and 2 are real (i.e. é = é* ) and symmetric (i.e.
A=AT)

(a) and (b) hold for all real and symmetric matrices.

4.8 Normal Modes
We can now finish off solving the coupled springs problem.
We had:
KX = mo® X
X1
X = Xcosat, X =
X2
1 X2
2k -k
K =
<=2 20
- to get eigenvalues
2k-2 -k | _
~k  2k-21
A = mao?

(2k-2Y -k? =0

11:k:ma)12:>a)1: L

Um
,12:3k:ma)22:>a)2: %
Um

These are the angular frequencies of the normal modes.
The corresponding eigenvectors are:

1 (1
X, =—| |>Xx4=x
AR \/E[,J 1 2

1 (1
X, =— =—
A2 \/E(_1J_>X1 X2

X4 corresponds to the masses moving in phase.
X, corresponds to the masses moving in antiphase.
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