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1) Electric Charge and Electric Field 
Lecturer: Dr. Bryan Anderson 
 
(Chapter 22, Young and Freedman) 
 
1.1 Matter 

Simple! 
 

1.2 Conductors, Semi-Conductors and Insulators 
In solid state, the outer electron shells (the Valence electrons) are in bands of energy levels. 
If a band is not full, electrons can jump across energy levels and move around. This gives 
conduction. 
 
Bands in materials: 

 
VB: Valence Band 
CB: Conduction Band 
 
In Insulators, the Valence band is full. There is nowhere free for an electron to move to. As it 
takes a lot of energy to get electrons into the conduction band (several eV) this doesn’t 
happen very often, and most insulators simply melt when given the energy needed for the 
transition. 
 

, .
1
40T room tempK eV=   

 
1.3 Induced Charge 

Take an isolated atom: 

 
 
Placing a charge near the isolated atom causes the nucleus to be repelled, while the electron 
cloud is attracted. 
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The effect of charge separation is called polarization. 
 
Placing a charge near a plate (either an insulator or metal): 

 
In an insulator, the net charge movement results in surface charges, while in a metal the 
electron cloud is affected. Bare ions are left on the back surface, and electrons on the front 
surface. 
 
NB: charge densities 1<<  per surface lattice ion. Movement of charge is very small i.e. 

10
10 m

!
<< . 
 
Example 1-1 

Induced charge transfer 
A charge is induced on a metal slab. What happens if this charged slab is then connected 
to another piece of metal? 

 
 

 
It would be possible to break the connection, leaving both pieces of metal oppositely 
charged. 
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1.4 Coulomb’s Law 
The magnitude of the force between two point charges, q1 and q2, separated by r is given by: 
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ε0 is the permittivity of free space, and is a constant. 
The 4π appears here so it does not in other equations! 
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Units are Newtons, Farads, Coulombs and Meters. 
If 

1
q  and 

2
q  have the same sign, the force between them is repulsive. If they have opposite 

signs the force is attractive. 
NB: Coulomb’s law does not apply to distributive charges, just point charges. 
 
Introduce the Electric field E. 
Force on q2 due to the presence of q1: 
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Units of E are N.C-1 or Vm-1. 
 
Express E as a vector (drop subscripts): 
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!E Force on test charge q2. 
E points radially away from q if q is positive. 

 
 

1.5 Electric Field Calculations 
Principle of Superposition 

For several point charges, the net force on a test charge is the vector sum of the forces 
experienced when the charges are taken one at a time. 
For q1  E1 and F1 on test charge Q 
For q2  E2 and F2 on test charge Q 
Etc… 

+ 
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Then ( )…… ++=++=
2121
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Example 1-2 

Field of an electric dipole: 

 
21 EE =  

y components of E1 and E2 will cancel. 
 x-direction. 
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Example 1-3 

A ring-shaped conductor of radius a  has total charge Q uniformly distributed around the 
ring. What is the electric field on an axis a distance x away from the centre of the ring? 
NB: there is a much simpler calculation like this in Workshop 2. 
Remember to look for symmetry! 
 
The approach to distributed-charge problem like this is to: 

1. Break up the ring into tiny segments small enough to be regarded as point charges 
2. Calculate the vector field from a segment 
3. If possible from any symmetry, only calculate the component which is going to survive 

in the final result. 
4. Sum or integrate over all possible components 

 
In this problem, the field from the segment is going to be at an angle to the axis but the net 
field will be along the axis. The components perpendicular to the axis will integrate out. See 
the diagram. 
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Charge in element ds  is dQ . 
Ignore ydE  because the segment on the opposite side of the ring cancels it out. 
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At large distances, this appears to be a point charge. 
In the middle of the ring, 0

x
E = . 

 
1.6 Electric Field Lines 

An electric field line is the curve drawn at a tangent to the direction of E. The line spacing tells 
you about the field strength E . Since E is unique at any point, the field lines never cross. 
Caution: a released test charge does not move along an E line due to the inertia of the 
particle. 
Example: electric dipole from Example 22.9. 
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1.7 Electric Dipoles 
A dipole is two equal and opposite charges separated by a distance d. They are important in 
physical situations. 
Examples: 
− Induced polarization due to E. 
− Radiation from a “dipole” antenna. 
− Ionic substances are natural dipoles e.g. NaCl. 
Aside: water is a good solvent of ionic compounds (salts) because the H2O molecule has a 
dipole moment. 
 
Example 1-4 

Force and Torque on a dipole in an electric field. 
In a uniform E field (the field strength and direction are the same everywhere) there is no 
translational force on the dipole but there is a torque. 

 
Torque sinqEd! = "  
Dipole moment qdP = (definition) 
Therefore sinpE! = "  

e.g. H2O molecule has 30
6.13 10p x Cm!

= . 

Take eq 2=   mx
xx
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sinpE! = "  
pxE! =  

Where p  is drawn from the negative to the positive charge. As drawn, !  is into the page. 
 
If the dipole rotates in the field, work is done. dW d= ! " . Because the torque is in the 
direction of decreasing φ we must write it as !" sinpE#=  and !!dpEdW sin"= . 
For change from φ1 to φ2, the work done is: 
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Now the work done Is the negative of the change in EP. So EP of a dipole in a uniform 
field is: 
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Example 1-5 
Field of a dipole on an axis at distance r>>d 
We have seen from Example 1-2 that, along the bisector

xEiE ˆ= . 
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1.8 Electric Fields inside Conductors 

Static E is zero inside conductors. 
Take a series of metal plates: 

 
All charges are surface charges. Charge layers are very thin. 

+ + + + + + + + + + + + + + +  ++++++++++++++++++++++ 
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2. Gauss’s Law 
(Chapter 23, Young and Freedman) 
Gauss’s Law is useful for calculating E for distributive charges with some sort of symmetry. The 
basic idea is to enclose the charge distribution by a closed surface. The total flux of E out of the 
surface depends only on the total charge enclosed by the surface. 
Flux means the flow of something. Analogy: consider a velocity vector V rather than E. The 
total flux of V = velocity x area = volume per second. 

 
2.1 Charge and E 

 
If the charge is not inside the box, then not all the flux lines will pass through the surfaces so 
the full charge will not be shown. Also, the flux entering the box will also leave the box on the 
opposite side, so a lot of the charge will cancel. Will equal 0 charge. 
 

2.2 Calculating E flux 
Assume that there is a uniform electric field. 

 
Both surfaces have the same area. 
The flux of E through the surface normal to E is EAn =! . 
For the other surface: !cosEAi ="  
If you represent the surface by a vector nAA ˆ=  where n̂  is a unit vector normal to the 
surface. 
In the general case, 

E
E A! = "  or

E
d E dA! = " . 

In general, the total flux out of a closed surface is !=" dAEE . . The integral needs to be 

applied over the whole of the surface. 
 

2.3 Gauss’s Law 
Start with a point charge. 
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Choose a surface of radius R about the charge. 
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Gauss’s Law states that the total flux of E out of the whole of a surface is equal to the net 
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Examples include a Parallel plate capacitor. 
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Example 2-1 
Take a spherical conductor with charge Q and radius R. 
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Take a small area of the surface of the outer sphere, dA . 

( ) ( )2
. 4

E
E dA E r dA r E r! = = = "# #  

If R<r, enclosedQ Q=   ( )
2

4 o

Q
E r
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!"
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If r<R, 0enclosedQ =   ( ) 0E r = . 

 
 

Example 2-2 
Take a long, cylindrical conductor of radius R and charge λ per unit length (Cm-1), which 
has an infinite length. Take part of the cylinder: 

 
Field lines must be normal to the cylinder, or there would be an electric force along the 
cylinder causing electrons to move. This would then set up an electric force in the opposite 
direction; these forces would then balance themselves out, ensuring the field lines have no 
horizontal component. 
There is no E out of the ends of the surface, only the sides. At radius r the area of the 
surface of the cylinder (not counting the ends) is 2 rl! . 

( )2E

enclosed

o

o

E r R rl

Q

l

! = > "

=
#

$
=
#

 

E  

r 

2
1

r

! "# $ %
& '

 

2
4 o

Q

R!"

 

R 

R 

r 

l 



PC 1342 – Electricity and Magnetism - Notes  Semester 2 

11 
 

( )

( )

1

2

0

o

E r R
r

E R r

!
> =

"#

> =

 

 
Example 2-3 

Consider an infinite plane sheet of charge with a charge density of σ cm-2. 

 
There is only an E flux out of the ends of the cylinder. 
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Example 2-4 

Field at a surface of infinite plane conductor: 

 

E  

R r 

1

r

!  

2
o
R

!

"#
 

+ 

+ 

+ 

+ 

+ 

+ 
+ 

+ 
+ 

A 

Plane 
+  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  +  

A 



PC 1342 – Electricity and Magnetism - Notes  Semester 2 

12 
 

The only place where E flux comes out is at the top end. 

E
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σ is the surface charge density. 
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Example 2-5 

Uniformly charged sphere with radius R and charge Q. Charge is distributed throughout the 
sphere with constant density. 
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Cavities in a conductor. Put a charge on the conductor. 

 
As there can be no electric fields within the conductor, there is no electric field in the cavity. 
What happens if you put a charge within the cavity? 

 
Field lines come out from every part of the surface. 

 
3. Electric Potential 

(Chapter 24, Young and Freedman) 
 

3.1 Electric Potential and Energy 
Work done = force x distance. 

cosdW F dl Fdl= ! = "  
If 0dW >  the force does work on the outside world and the system creating the force looses 
energy. The potential energy change dU dW F dl= ! = ! " . 
In electrostatics F qE=  therefore dU qE dl= ! "  
 
Take a uniform field. 
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.a b dW F qEd
!

= =  
For gravity: 
yF mg

U mgy

= !

= !

 

For electrostatics: 
yF qE

U qEy

= !

=

 

When the test charge moves from a  b then: 
( ) ( )a b a b a bW U U U qE y y

!
= "# = " " = "  

Just like gravity except you can’t have a negative mass. 
 

3.2 Electric potential of two point charges: 

There is a force between the charges
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cosdW qEdl qEdl qEdr= = ! =  
The static E-field is conservative. 
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Using this, we can find U for test charge for any distribution of charge. 
Total energy of the system of charges: 
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3.3 Electric Potential 

Potential V is the potential energy per unit (test) charge. 
So  
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Unit of V is the volt. 1V=1JC-1. 
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For
a
U  and

b
U  as defined previously 
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Potential due to a single point charge is 1 1 1
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This is the potential at a distance r from charge q. 
V and U are scalar properties. For an assembly of charges 
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For a charge distribution: 
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We can calculate V from E where E is known. 
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Can see that V = field x distance, therefore the unit of E can be expressed as Vm-1. 
TV signal 3 1

10 Vm
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3.4 Examples 
Example 3-1 

There is a charge q in a conducting sphere of radius R. We have showed that, for r R> , 
field is the same as for a point charge. 
Take 0V =  at r = ! . 
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V is constant inside the conductor since static 0E =  inside a conductor. 
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surface surface
V RE MV= ! for 1R m= ,30KV for 1R cm= ,300V for 0.1R mm= . 
 

Example 3-2 
Take an infinite line of charge density 1
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We could define V to be zero at say
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Example 3-3 

Take a long conducting cylinder of radius r, with charge density 1
cm
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E.g. remember 1
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!" # . A disk of radius R and charge density 2kr

o
e Cm
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where k is a constant. Find the field at distance h above the disc on the axis point. 

 
The inner circle has a radius a , with the outer radius a da+ . 
The area of the annulus is 2 ada! "  if da a<< . Therefore the charge on the annulus 
is 2
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3.5 Equipotential Surfaces 
These are three-dimensional surfaces on which V is the same everywhere. 

 

 
 
Plates of a capacitor. 

 
1) E is always perpendicular to the EP surface. 
2) Equipotential surfaces cannot touch or cross (c.f. E field lines) 
3) The whole of a conductor (static fields) is an equipotential surface. 
4) Since static E is always perpendicular to the surface of a conductor, equipotential surfaces 
are locally parallel to the surfaces of conductors. 
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3.6 Potential Gradient 
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3.7 Cathode Ray Tube 

 

Working out the speed of the electrons 2
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4. Capacitors and Capacitance 

(Chapter 25, Young and Freedman) 
4.1 Capacitors 

A capacitor is a device for storing charge. Different capacitors can have different capacitance; 
the capacitor’s ability to store charge. Different arrangements of pairs of electrodes or metal 
surfaces give different capacitors. 
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We define capacitance as C = (Charge stored on electrodes) / (Potential difference between 
electrodes). The unit of capacitance is the Farad (F). 1

1 1F CV
!

= . 
 
Example: a parallel plate capacitor. 

 
Assume d is small (comparable to A ) 
Assume E is uniform, and that we can neglect edge effects. 
Assume there is a charge Q on the plates. 

Charge density 1Q
Cm

A

!
" = . 

Gauss’s Law:
o

E
!

=
"

. 

As E is uniform, 
AB
V Ed= =battery voltage 1

o

Qd

A
=
!

. 

Therefore o

ab

Q A
C

V d
= = ! . 

Take 4 2
10A m

!
= , 4

10d m
!

= . 12
8.85 10 8.85C x F pF!

= = . 
 
Example 4-1 

Isolated metal sphere 
The second electrode in this case is the rest of the universe. 

We previously found 1

4 o

Q
V

R
=

!"
. 

Therefore 4 o

Q
C R

V
= = !" . 

Take 10R cm=  12 1
4 8.5 10 10 10C x x x pF! !

= " # . 
 
Example 4-2 

Concentric metal spheres 

 

Area A 

d 

+ + + + + + + + + + + + + + + + + + + + + + + 
+ + + + 

– – – – – – – – – – – – – – – – – – – – – – – – 
– 

E 
uniform 

+ 

+ 

+ 

+ 

–  

–  

–  
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( )
2

1

4
a b

o

Q
E r r r

r
< < =

!"
 

This is from considering a third sphere midway between the two above, and applying 
Gauss’s law. 
Electric field is 0 outside the capacitor.  

1

4

1

4

a

o a

b

o b

Q
V

r

Q
V

r

!
= "#$ "

%
"=
"#$ &

Alternatively E dl! "#  

1 1 1

4
ab

o a b

V Q
r r

! "
= #$ %

&' ( )
 

4
a b

o

ab b a

r rQ
C

V r r

! "
= = #$ % &

'( )
 

Take 9.5 , 10.5
a b
r cm r cm= =  110C pF! . 

 
4.2 Combinations of Capacitors in Series and Parallel 

Series: 

 

The Q’s are the same since same charging current and q idt= ! . 

1

1

2

2

Q
V

C

Q
V

C

=

=

 

Therefore 

1 2

1 2

1 2

1 1

1 1 1

ab

eq

V V V Q
C C

V

Q C C C

! "
= + = +# $

% &

= = +

 

eqC  is the equivalent capacitance of two capacitors in series. This is comparable with 
resistors in parallel. 

 
 
 
 
 
 
 
 

V1 

V2 

C1 

C2 

+Q 

-Q 

+Q 

-Q 
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Parallel: 
1 2

1 1

2 2

1 2

total
eq

V V

Q C V

Q C V

Q
C C C

V

=

=

=

= = +

 

This is comparable to resistors in series. 
 

4.3 Energy Storage in Capacitors and Electric Fields 

Capacitor Q
V

C
= . If we move charge dq  from the negative plate to the positive plate then the 

work done dW Vdq= ( ).E dldq!  
Therefore the total work done in charging the capacitor is 

2

21 1

2 2

Q
W dW Qdq CV

C x
= = = =! !  

If we define the potential energy of a capacitor to be 0 when 0Q = then; 
2

21 1

2 2 2

Q
U CV QV

C
= = = . 

E.g. camera flash 

2 2

1

300

1
4.5 10

2

C F

V V

U CV x J
!

" µ

"

= "

 

If the flash lasts in the order of 3
10

!  seconds, power in flash 45W! . 
 

The energy stored in fields (alternative view) 

For parallel plates
o

E
!

=
"

. 

V Ed=  
Volume of space occupied byE  is Ad  
Energy density in a capacitor is 

2

2 2

2

1
2

1

2

1

2

o

o

CVU
u

Ad Ad

A E d

d Ad

E

= =

!
=

= !

 

( )3Jm
!  

 
5. Magnetic Fields and Forces 

(Chapter 28, Young and Freedman) 
5.1 Magnetism 

Magnetism has been known for a long time. The oldest use is the magnetic compass used in 
navigation. 
The Earth is a big magnet: 
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The geomagnetic North Pole is the S side. 
The compass needle will point NS while the magnet in the Earth is SN as like poles repel, 
while unlike poles attract. 
All magnetism is associated with currents – i.e. with moving charges. Even permanent 
magnets can be explained by this – they have permanent atomic currents. 
You can induce magnetism into “soft” magnetic materials, e.g. soft iron. These materials 
become magnetized in the presence of an external field. If you remove the external field, this 
magnetism disappears. 
 
Applications of magnets: 

Permanent magnets: 
− Compass needle 
− Fridge door 
− Door seal 
− Electricity meters 
− Small motors 
− Tool holder 
Induced magnetism: 
− Motors 
− Transformers 
− Inductors e.g. the ignition coil in a car, tuned circuits LC, filters to pass or reject certain 

frequencies (50Hz in power supplies) 
 

5.2 Magnetic Field 
A moving charge or current creates a magnetic field. A magnetic field exerts a force on 
moving charges or currents. 
Represent a magnetic field by B. 
Force on a charge q moving at a velocity v in a field B: 
B

v

q

!

!

!

 

F q v B

F qvxB

!
=

=

 

S 

N 

N 
 
 
S 
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sinF qvB= !  

( )F q E vxB= + . 
(qE is the electric force). 
 
The unit of B is the Tesla T. 

1 1

1 1

1 1

1

T NsC m

NA m

! !

! !

=

=

 

(Newton second) / (Coulomb Meter) 
(Newton) / (Ampere Meter) 

Current dq
I

dt
=  Amperes 

1
1A Cs

!
=  

Centimetre Gram Second (cgs) unit of B is Gauss (G) 
4

1 10G T
!

= . 
 
Typical sizes of magnetic fields: 

The Earth’s magnetic field 1G! . 
A bar magnet 5000 0.5G T! =  
Atomic fields 10T! . 
Electromagnets – few T. 
Steady fields in the lab 50T! . 
Pulsed field in the lab 120T!  
Neutron star (surface) 8

~ 10 T . 
 

5.3 Magnetic Field Lines 
Bar magnet: 

 
Solenoid (Cylindrical coil of wire): 

F 

B 

v  

v
!

 

+q 
!  

S  N 
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Electromagnet: 

 
 
Long straight wire: 

 
Wire loop carrying a current – magnetic dipole: 

 
 

5.4 Magnetic Flux, Gauss’s Law for B 
Define the magnetic flux: 

cos

B
d B dA

B dA

B dA

!" =

= #

= $

 

I 
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Total flux through a surface is: 

cosB dA B dA

B dA

!" = # = $

= #

% %

%
 

SI unit of flux is the Weber (Wb ). 
2 1

1 1 1Wb Tm NmA
!

= =  
 

Aside: Old books sometimes define B in terms of 
B

!  i.e. 
d

B
dA

!
=

B .  Units of 2
Wbm

! . B is 

called the magnetic flux density. 
 
If the surface completely encloses the volume then: 

0
B

B dA! = " =# . 

This is Gauss’s law for B. 
This reflects the fact that B never starts or ends. 

 
5.5 Motion of Charged Particle in B 

( )F q vxB=  

( )F q E vxB= +  
B is static and uniform in all but one of the following examples. Speed of the particle is not 
affected. 
 
B v!  

 
Motion of particle is a circle with radius r. 

2mv
F q vB

R

mv
R

q B

= =

=

 

B 

dA

 

B
!

 

x  x  x  

x  x  x  

+  

r 

F 

v 

q 
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The angular frequency of the motion v

R
! =  

1

2 2

B
q
m

B
f q

m

! =

!
= =

" "

 

f is called the “cyclotron” frequency. For an electron 10
2.7 10f x B!  

e.g. microwave oven 
9

2.45 10

0.09

f x Hz

B T

=

=

 

If B and v are not perpendicular: 

 
II
v  is not affected by B. 
v
!

 causes circular motion in that plane. Therefore the path is helical. 
 
In a non-uniform field, the particle can be trapped in the magnetic field. This is called a 
“magnetic bottle”. 

 
It is possible for the particle to bounce back from the right-hand-side, and then bounce 
backward and forward in the “bottle”. 
The component of the force on the right-hand-side is to the left. 
The component of the force on the left-hand-side is to the right. 
This can be observed in the Van Allen radiation belts around the Earth.  
 
 
 
 
 
 

+q 

~ 
v  v

!
 

v !  

No force as 0v xB =!  
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5.6 Applications 
Velocity selector 

Select mono-velocity particles from a beam. 

 
Uniform B field into the paper; uniform E field. 
For no variation, 0F qE qvB= ! + =  

Therefore E
v

B
= . 

This works whether q is positive or negative.  

Thompson’s determination of the e
m

 of the electron used this. His apparatus consisted of 

an electron gun accelerating the electrons through a potential difference V. He used the 
velocity accelerator and a florescent screen to view the beam of electrons. 
We can equate the kinetic energy of the electron to eV . 

21

2
mv eV= . 

Therefore 2eV
v

m
= . 

For no deflection, 2E eV

B m
=  

Therefore
2

1

2

e E

m V B

! "
= # $

% &
. 

He found only a single value for e
m

 independent of the source of the electrons. This shows 

that there is only one sort of electrons. This proves that they are basic constituents of 
matter. 

11 11.75881962(53) 10
e

x Ckg
m

!
= . 

 
Mass Spectrometer 

(Third year lab) 

+ +q 
Beam 

x  x  x  

x  x  x  

x  x  x  

x  x  x  

+ + + + + + + + + + + + + 
+ 

 – – – – – – – – – – – – – –  
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Velocity
1

E
v

B
= . 

E and B1 are the fields in the velocity selector. 

2 1 2

mv m E
R

qB q B B
= =  

 Discovery of isotopes (Same chemical species, different masses)  part of the evidence 
for the existence of a neutron. 
For helium, masses of 20 and 22 come out. 

 
 

5.7 Magnetic Force on a conductor carrying a current 
Conductor: fixed positive ions, mobile charge carriers (e.g. electrons) 

 
J is the current density. 
Let the carrier drift velocity be 

d
v  upwards. 

dF qv B=  
Let n = number of carriers per unit volume. 
Volume of cylinder AL=  
Therefore the number of carriers in the cylinder nAL= . Therefore the total force on all the 
carriers is  

( )
d

d

F nALqv B

nqv A LB

=

=
 

But dJ nqv=  

x  

Ion 
source 

Beam 
Velocity 
selector 

Thin, mono-
velocity beam 

Uniform 
B field 

Radius depends 
on mass of particle 

Particle 
detector 

R1 

R2 

+q 

x  

L 

F 

jv  

A 

J 

B uniform 



PC 1342 – Electricity and Magnetism - Notes  Semester 2 

29 
 

Therefore: 
I JA

F ILB

F ILxB

=

=

=

 

 
For a non-straight conductor: 
Consider a little segment.  
dF IdLxB= . 
 
What if the charge is negative? 
Upwards current is a downward drift of negative charge carriers, and q is negative. These two 
cancel each other out. Therefore this derivation is not sensitive to the charge polarity. 
 

5.8 Force and Torque on a current loop 
(Uniform B) 

 
Net force 0yF =  
No translational force on loop. 

( )' sin 90 cos

IaBF

F IbB IbB

=

= ! " = "
 

Torque about y direction 2 sin sin
2

b
F IAB! = " = "  where A is the area of the loop A ab= . 

IA  is called the “magnetic dipole moment”, denoted by IAµ = . The sign of µ is positive if, 

looking along µ the current circulates clockwise. 
Thus xB! = µ  

Torque on a magnetic dipole µ in a B field. 
Compare with the electric dipole, PxE! =  and 

P
E U P E= = ! "  

By analogy, the potential energy of a magnetic dipole in a magnetic field is U B= !µ " . 
 
Example 5-1 

A circular loop of radius 0.05m , 30n = , 5I A= , 1.2B T= . 

 
The area of the loop 2

A r= !  

I 
x 

φ 

B (z-direction) 

b 

a 

F 

-F 

F’ 

-F’ 

z 

x 

y 

B uniform 

I 

µ 

r 
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For one turn 2

1
IA I rµ = = !  
2

total
n nI rµ = µ = !  

Torque on one turn 
1

sin 0.0471IAB Nm! = " =  
Torque on n turns 

1
1.41n Nm! = ! = . 

 
Example 5-2 

Change the angle in the previous example. 
Initial, 90

o
! =  

1 1
cos 0p totalE U B= = !µ " =  

Final, 0! = , 
2 2

cos 1.41p totalE U B J= = !µ " = !  
This is negative as work is done on the outside world. 

 
Force on a magnetic dipole in non-uniform B 

 
 
Magnetic materials 

Many elements have no permanent magnetic dipole moment. 
Iron has several permanent magnetic moments aligned. It can exist in many different 
states. In the unmagnetised state, there is random orientation of the dipoles. In the 
magnetized state, there is alignment of the dipoles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N 
µ I 

Net translational force 

F 

F 
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5.9 Direct Current Motor 
Most motors >50W, e.g. vacuum cleaner, drill, mixer, … These all work off AC because the 
magnet is an electromagnet powered off the same AC. 

 
 

5.10 Hall Effect 

 
z dF qv B=  

Net transverse force: 
0z d y

z d y

F qE qv B

E v B

= + =

! = "
 

q is positive,
z
E  is negative. 

The current density dJ nqv=  

Therefore x y

z

J B
nq

E
= ! . 

For a metal, n is large and q e! . 
d
v is very small, and the Hall effect is small. For semi-

conductors, n is relatively small and
d
v  is large, and the Hall Effect is relatively large. 

 
 

I 

Fixed carbon 
brackets 

Rotating 
contacts 

Rotates 

N 

S 

+ 
+ 

+ 
+ 

+ 

–
  –

  –
  –

  –
  

–
  –

  –
  –

  –
  

+ 
+ 

+ 
+ 

+ 

–
  

x
J  

x
J  

z
E  

z
F  

d
v  

z 

yB  V 

+ 

z
E  

z
F  

v 

B uniform  

Negative charge carrier Positive charge carrier 
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6. Sources of B 
(Chapter 29, Young and Freedman) 
− Moving charges or a current-carrying conductor experience a force in a magnetic field. 
− If the magnetic field is static, it alters the velocity but not the speed or energy of the moving 

charge. Due to the conservation of momentum, there must be a reaction back on the system 
producing the magnetic field. 

− The magnetic field is created by moving charge or current. Therefore deflection of a moving 
charge in a magnetic field is really moving charges interacting with each other. There is 
symmetry just as for static charge to static charge interactions. 

 
6.1 Magnetic field of a moving charge 

 

2

1
, ,sin ,B q v
r

! "  

Introduce a constant of proportionality: 

2

sin

4

o
q v

B
r

!µ" #
= $ %&' (

 

Making this into a vector equation: 

2

ˆ

4

o vxr
B q

r

µ! "
= # $%& '

 

This is the magnetic field of a charge q moving with velocity v. r̂  is the position of the point 
where B is determined with respect to the position of the charge. 
Of course, the charge also produces an electric field. This is neglected here. 
Note the symmetry: the B field forms circles about the direction of motion. 
 
Constant of proportionality: 

4

o
µ

!
 

1 1

1 1

1 1

1

T NsC m

NA m

! !

! !

=

=

 

Units of 
o

µ  are 2 2 2 1 1 1 1
Ns C NA WbA m TmA Hm

! ! ! ! ! !
= = = =  

H is the Henry unit of induction. 

o
µ  is defined to be 7 1

4 10x Hm
! !

"  

Remember 12 1
8.85 10

o
x Fm

! !
" =  (definition) 

8 11
3 10

o o

x ms c
!

= =
" µ

 the velocity of light in a vacuum. 

 

q v 

φ r 

P 
B 

B 

B 
x 
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Example 6-1 
Force between two photons a distance r apart, moving in opposite directions with velocity v. 

 
E
F  is in the +y direction on the upper charge/. 

B
F  is also upwards. 

2

2

1

4
E

o

q
F

r
=

!"
 repulsive. 

Lower charge: ˆv v i=  and ˆr̂ j=  

At upper charge: 
2 2

ˆ ˆ
ˆ

4 4

o o
v i x j qv

B q k
r r

µ µ! "
= =# $% %& '

. 

Force on the upper charge due to B created by the motion of the lower charge: 

( )
2 2

2

ˆ ˆ

4

o
B

q v
F q vi xB j

r

µ
= ! =

"
 

This is also repulsive and is the inverse square. 

Note 
2

2

2

B

o o

E

F v
v

F c

= ! µ =  

6.2 Magnetic field of a current element 

 
Volume of element is Ad!  

+ 

+ 

z 

y 

v 

r 

x v 

B 

FB 

φ 

d!  

B 

r 

P 

B 

A 

I 
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Therefore the moving charge is: 
dQ nAqd= !  which moves with a drift velocity 

d
v . 

n is the charge carrier density 
q is the charge of the carrier. 
 
At point P: 

2

2

sin

4

sin

4

o d

o d

v
dB dQ

r

v Ad
n q

r

µ !" #
= $ %&' (

µ !" #
= $ %&' (

!

 

But dn q v A I=  the current in the element. 

2

2

sin

4

ˆ

4

o

o

d
dB I

r

d xr
dB I

r

µ! " #
$ = % &'( )

µ! "
= % &'( )

!

!

 

This is called the Biot-Savart Law. 

For the total field,
2

ˆ

4

o d xr
B I

r

µ! "
= # $%& ' (

!
. 

 
6.3 Magnetic field due to current I in a straight conductor 

 
dB is perpendicular to dl and r. Therefore is into the paper. 

( )
2 2

sin sin

dl dy

x

y

=

! " # = # =
+x

 

( ) ( )
2 3 1

2 22 2 22

sin 2

4 4 4

a a
o o o

a a

I I Idl xdy a
B

r x x ax y
! !

µ µ µ"
= = =

# # #
++

$ $  

When 2a x>>  (infinite wire approximation) 

( )
1

2 2 2

2

o

x y a

I
B

x

+ !

µ
" !

#

 

But because of axial symmetry: 

2

o
I

B
r

µ
=

!
 where r is the distance of the point off the axis. 

x 
y 

x 

-a 

+a 

dI  

I 

2 2
r x y= +

-a r 

B into paper 
x 
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Example 6-2 

2 long parallel wire, currents in opposite 
directions.

 
ijB  – i = wire, j =  point (T = total) 

At point
1
P ,  

( )

( )

11

21

1

2 2

2 4

8

o

o

o

T

I
B

d

I
B

d

I
B

d

µ
= !

"

µ
=

"

µ
= !

"

 

At point 
2
P ,  

12

22

2

2

2

o

o

o

T

I
B

d

I
B

d

I
B

d

µ
=

!

µ
=

!

µ
=

!

 

At point 
3
P ,  

( )
13

23

3

2 3

2

3

o

o

o

T

I
B

d

I
B

d

I
B

d

µ
=

!

µ
= "

!

µ
= "

!

 

 

 
 
 

6.4 Force between parallel conductors carrying current (long wires) 

. x 

I 

1

r

!  

. x 

Wire 1 
current out 
of paper 

Wire 2 
current 
into paper 

P1 P2 P3 

-3d -d +d +2d 

B12 B22 

BT2 

B21 

B11 

BT1 

B13 

B23 

BT3 
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B is the field at the upper wire due to the current I in the lower wire. 

2

o
I

B
r

µ
=

!
 

Force on length L of the upper wire is: 

' '
2

o
F I LB II L

r

µ
= =

!
 

Therefore the force per unit length is: 
'

2

o
IIF

L r

µ
=

!
 

Equal and opposite forces act on the lower wire. 
Currents in same sense attract – “pinch effect”. 
Currents in opposite senses repel. 
An example: 

7 1

'

1

2 10

I I

r m

F
x Nm

L

! !

=

=

=

 

 
6.5 Force on axis field of a circular loop 

  
Neglect the connecting wires. 

2 2

2 2

2 2

4

cos

sin

cos

sin

o

x

y

I dl
dB

x a

dB dB

dB dB

a

x a

x

x a

µ
=

! +

= "

= "

# $" =% &
+% &

% &
" =% &% &

+' (

 

B 

F 

I 
I 

y 

x
dB  

dB  

2 2
r x y= +  

a θ 

I 
x 

dl  
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By symmetry, for the whole loop there is no net y
B . 

Therefore 

( ) ( ) ( ) ( )

2

3 3 3 3
2 2 2 2 2 2 2 22 2 2 24 4

2 2

o o o o

x

I I Iaadl a
B B dl

a x a x a x a x

µ µ µ µ µ
= = = = =

! !
+ + + ! +

" "  

where 2
I aµ = !  the magnetic dipole moment of the loop. NB: 3dl a= !"  

On axis field: 

 

At the centre, 0x = . 
3

22

o o
I

B
aa

µ µ µ
= =

!
 

For x a>> , 
2

3 3
2 2

o o
Ia

B
x x

µ µ µ
= =

!
 i.e. 

3

1
B

r
!  (on axis). 

Compare with the electric dipole. 
 

6.6 Ampere’s Law 
Using the Biot-Savart law, we found B for an infinite straight wire carrying current I: 

2

o
I

B
r

µ
=

!
at radius r. 

Take 2
o

B dl rB I! = " = µ#!  

Loop of radius r about wire 

 

1

1

2

2

1 2

1 2

2

2

0
2 2

o

o

I
B

r

I
B

r

r r
B dl B B

µ
=

!

µ
=

!

! !" #
$ % = + & =' (

) *+!

 

First path enclosed the current  
o
Iµ  

Second path did not enclose the current  0. 
The actual path does not matter. 

x 

I 

B1 

B2 

r1 

r2 
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o enclosed

loop

B dl I! = µ"!  Ampere’s Law 

I  is the current enclosed by the loop. 
 
Example 6-3 

Consider the field inside and outside a very long, cylindrical conductor carrying a charge. 

 
Around coaxial circles 2B dl B r! = "#!  

For large circles ( )r R!  
enclosed
I I=  

Therefore ( )
2

o

outside

I
B r R

r

µ
! =

"
 

 
For the small path ( )r R<  

2

2enclosed

r
I I

R

=  assuming uniform current density 

Therefore 
22 2

o enclosed o

inside

I I
B r

r R

µ µ
= =

! !

 

 
 
 
 
 
 
 
 
Example 6-4 

I R 

B 

B 

r 

r 

B 

R r 

2

1

r

!  

1

r

!  

2

o
I

R

µ

!
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Field of a Solenoid (long): 
A Solenoid is a helical coil of cylindrical form, with n turns per unit length. 
 

 
 
Regard as having n adjacent circular current loops per unit length. 
Consider central part of the very long solenoid. 

 
Appealing to symmetry; 
inside
B is in the  direction. 

outside
B might be in the  direction. 
If loop abcd is outside the solenoid, there is no current enclosed therefore 0

outside
B = . 

For the loop straddling the solenoid; 

inside o
B dl B L InL! = = µ"!  

inside o
B nI! = µ  

and it is the same everywhere inside. 
For a solenoid of finite length: 
 

 
Could use Biot-Savart law. Solution on axis. Numerical solution off axis. 
 
 
 

Example 6-5 

I 

I 

x 

. 

x x x x x 

L 

a b 

d c 

. . . . . 
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Field of a Toroidal (doughnut) solenoid 

 
Total of N turns. 

r b>  2 0B dl B r! = " =#!  

r a<  0B dl! ="!  

This is because there is no current enclosed. 

a r b< <  2
o

B dl B r nI! = " = µ#!  

Therefore 
2

o
nI

B
r

µ
=

!
 everywhere inside the toroid. 

 
We can use Biot-Savart generally, but you have to integrate which can be complicated. 
You can derive Ampere’s law from Biot-Savart. Ampere’s law can be used in problems where 
there is some sort of symmetry – this eases the calculations. 
Have to know that B is uniform round the loop (or perpendicular to dl ). 
Ampere’s Law is important because Maxwell found an error – extra “displacement” current 
which needs to be added.. 
Corrected Ampere’s law analogous to Faraday’s law  EM waves. 
 
Example 6-6 

Infinite current sheet 1
k Am

!  

 
 
 
Loop 1: 

x 

. 

B 

a 

b 

x 

x 

x 

x 

x 

x 

x 

Sheet 

a 

b 

d 

c 

B B B2 B1 

h e 

g f 
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( )( )0 0 2

2

o

o

B dl Bl B L BL kL

k
B

! = + + " " + = = µ

µ
=

#!
 

Loop 2: 

( ) ( )1 2 1 2

1 2

0 0 0 0
o

B dl B L B L B B L

B B

! = + + " + = " = µ =

# =

$!
 

 
Electric Magnetic 

Coulomb’s Law
2

ˆ1

4 o

dqr
dE

r
=

!"
 Biot-Savart 

2

ˆ

4

o dlxr
dB I

r

µ! "
= # $%& '

 

Gauss’s Law enclosed

E

o

Q
E dA! = " =

#$  Ampere’s Law 
o enclosed

B dl I! = µ"!  

Infinite line charge with 1
Cm

!
"  

1 2

4
o

E
r

! " #! "
= $ % $ %&' ( )( )

 

Infinite current 1
I Cs

!  
2

4

o I
B

r

µ ! "
= # $% & '

 

Infinite charged sheet 2
Cm

!
"  

( )
1

2
4

o

E
! "

= #$% &
#'( )

 

Infinite current sheet 1
K Am

!  

( )2
4

o
B K

µ! "
= #$ %#& '

 

For fields diverging in 2 “dimensions” 
2

1

r

 

Fields diverging in 1 “dimensions”  1
r

 

Fields not diverging at all  no dependence on r. 
 

29.10 Displacement Current 
If the current is spread over an area as a current density J ( )2Am

! : 

o enclosed o
B dl I J dA! = µ = µ !" "!  

The last integral is any surface which has the loop as a perimeter. 

 
Maxwell pointed out a problem with Ampere’s law. 

I 

A 

B 
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No current through the surface but there is a time varying electric field. 
E.g. parallel plate capacitor. 

o
o o E

A
q CV Ed AE

d

!" #
= = = ! = ! $% &

' (
 

Charging current E
c o

ddq
I

dt dt

!
= = "  

Maxwell defined this to be a “displacement current” E

D o

d
I

dt

!
= "  and modified Ampere’s Law 

to be ( )o c D
B dl I I! = µ +"!  

The first current is the conduction current (the current in the wire which can be measured), 
while the second is the displacement current (which is fictitious). 

Note also that the displacement current density D

D o

I dE
J

A dt
= = !  

With a dielectric in the capacitor, part of the displacement current is due to the charge 
movement as atoms polarise. But 

D
I  is in a vacuum. 

Faraday’s law dB E
dt

!  

Maxwell dE B
dt

!  

This symmetry leads to EM waves. 
 
Example 6-7 

 
a) What is E? 

L
R

A

!
= , I L

V IR
A

!
= =  

Therefore 1
0.15

IV
E Vm

L A

!"
= = =  

Very 
distant 
capacitor 

Surface 
for integral 

I Resistivity 
8

2 10x m
!" = #

 Area 
2

4A mm=  
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b) If 1
6000

dI
As

dt

!
=  what is dE

dt
? 

1 1
30

dE dI
Vm s

dt A dt

! !"
= =  

c) What is
D
I ? 

15
~ 10

E

D o o o

d dE dI
I A A

dt dt dt

!"
= # = # = # $  

 
7. Magnetic Induction 

(Chapter 30, Young and Freedman) 
We know that if we move a magnet near a coil, we get an induced EMF. If you change a 
current on one coil, you induce an EMF in a nearby coil (mutual inductance) and an EMF in the 
first coil (self inductance) 
 
7.1 Faraday’s Law 

 
Magnetic flux: 

cos

B

B B

d B dA

B dA

BdA

d B dA

!

" = #

= $

" = " = #% %

 

Faraday’s law states that the EMF induced in a closed loop is equal to the minus of the rate 

of change of magnetic flux through the loop i.e. B
d

dt

!
" = # where ε is the EMF. Alternatively, 

B
d

N
dt

!
" = #  if the coil has N terms. 

Direction of induced EMF: 

 
 
 
 
 

B dl 

φ 

A 

A A 

B increasing 

ε 

A B decreasing 

ε 

ε 
B increasing 

ε 

B decreasing 



PC 1342 – Electricity and Magnetism - Notes  Semester 2 

44 
 

7.2 Examples 
Example 7-1 

Search coil to measure B. 
A search coil is a coil of wire with N turns, area A in B. Resistance of the whole system is R. 

 
Step 1: align B with A (Maximise 

B
!  through the loop) BA! =  

Step 2: Quickly rotate the coil through 90 degrees. 0! "  

EMF dB
NA

dt
! = "  

Current I
R

!
=  

Therefore a charge Q flows through the galvanometer. 
NA dB NAB

Q Idt dt
R dt R

= = ! =" "  

The special galvanometers calibrated in Q. 
 

Example 7-2 
A simple alternator generates AC current. 

 

( )

cos

sin

B

B

B A

BA

d
e

dA

BA t

t

! = "

= #

!
= $

= % %

& = %

 

B 

V 

Sliprings 

Brushes 

A φ 

R 

Galvo 

B 
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If the slip rings are replaced by a commulator, the path in dotted lines is followed. 
 

Example 7-3 
AM Radio 
e.g. BBC 5 live, 909kHz. 

330
c

m
f

! = =  

 
An LC resonant circuit is formed with 100Q !  

( )B
d d

N n ABF
dt dt

!
" = =  

F is the value by which the ferrite concentrates B in the rod. 
If ( )cos 2

o
B B ft= !  (at fixed position) and 

12 4 2
3.3 10 , 10, 30, 2 10

o
B x T F N A x m

! !
" " = =  

6 4
.1.1 10 1.1 10Q x V x V

! !
" # =  

 
Example 7-4 

Faraday’s Disc Dynamo 
 

 
 

t 

ε 

B
!  

ε 

Variable 
capacitor 

L inductor 
Area A 

N turns 
Ferrite rod, 
Insulator, 
iron-like 

V 

R 

B 

B 

Brushes 

Rotates 
at ω 

θ 
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2

2 2

2

2

2 2

2

B

B

B

R
Area A

d

dt

BA

d dA
B

dt dt

dA R d R

dt dt

R
B

!
=

"
# = $

" =

"
=

! %
= =

%
& # =

 

e.g. 
1

1 , 0.1 , 300 ~ 50
2

1.5

B T R m rs f Hz

V

! "# $
= = " = =% &'( )

* + =

 

7.3 Lenz’s Law 
“The direction of any magnetic induction effect is such as to oppose the cause of the effect” 
E.g. braking torque on Faraday generator and examples on the sense of ! . 

 
7.4 Motional EMF 

All charges in any material moving in a magnetic field B  experience magnetic forces. Only 
the free charge carriers in a conductor are free to move. 

 
B uniform. 
Charge builds up on the ends of the conductor to produce an internal electric field E. In 
equilibrium, qvB qE= , therefore the motional EMG between the ends of the bar EL! =  
where L is the length of the bar. Therefore vBL! =  
Example 7-5 

An airplane. 
1

300v ms
!

=  
4

10B T
!

=  (Earth’s B field) 
33L m=  (using span). 

The motional EMF between the tips of the wings 1vBL volt! = = . 
 
Even though !  appears across the ends of the bar it cannot be used for anything since 
moving connections to it would have the same motional EMF induced in it, meaning that 
there is no reason for charge to flow around the loop. 
Now consider: 

x x x x x x 

x x x x x x 

x x x x x x 

x x x x x x 

+q 

Fm 

Fe 

v  

Negative moving 
conducting bar 

Positive 
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Example 7-6 

Consider a rod antenna (length L << !  wavelength) in the E field of an EM wave, parallel to 
the rod. The EMF induced in the rod

E
EL! = . We could equally well determine the 

motional EMF induced in the rod as the B component of the wave as it passes at velocity c. 

 
Motional EMF 

B
cBL! =  

We want 
E B
! = !  

Therefore 8 11
3 10

o o

E
C x ms

B

!
= = =

µ "

 

This is true in a vacuum. 
 
7.5 Induced Electric Fields 

Long solenoid. 
inside o
B nI= µ  n turns per unit length. 

 

Fixed rails Sliding contact 

Velocity v 

B uniform 
into paper 

I 

E 

B 

Velocity c 

I 
I’ 

Galvo 
G 
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To force a current I’ through the loop there must be a tangential E field. 

B

o

d dI
nA

dt dt

E dl

!
" = # = #µ

$ = "%!
 

Therefore we can state Faraday’s Law as: 
B

d
E dl

dt

!
" = #$!  

 
7.6 Eddy Currents 

Any conductor moving in B or experiencing changing B has EMFs induced in it. In the latter 
case, currents can flow. Where the induced currents are unwanted, they are called eddy 
currents, e.g. in electric motors and transformers. These have ferromagnetic cores (iron or 
steel) and are made of metal. Eddy currents cause heating, meaning that power is lost. 
 
Example 7-7 

Airport security 

 
 
7.7 Maxwell’s Equations 

These are a collection of the fundamental equations of E&M. 

Gauss’s Law for E: enclosed

o

Q
E dA! =

"#!  

Gauss’s Law for B: 0B dA! ="!  

Ampere’s Law E

o c o

d
B dl I

dt

!" #
$ = µ + %& '

( )*!  

Faraday’s Law B
d

E dl
dt

!
" = #$!  

In empty space, there are no charges or currents so: 
Gauss’s Law for E 0E dA! ="!  

G 

x x 
x x x 

x 

B 

I 
I’ 

~ 
V 

AC Generator EMF generated 
by magnetic 
induction 
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Gauss’s Law for B 0B dA! ="!  

Ampere’s Law E

o o

d
B dl

dt

!
" = µ #$!  

Faraday’s Law B
d

E dl
dt

!
" = #$!  

There is an obvious symmetry between the two Gauss’s Laws and Ampere’s and Faraday’s 
laws, except for the sign and some constant. 
 

8. Inductance 
(Chapter 31, Young and Freedman) 
A current I in a conductor produces a magnetic field, and as a result there is a magnetic flux 
linking any nearby conductors. Changing I will result in EMFs being induced in all conductors 
nearby, including the original conductor. 
 
8.1 Mutual Induction 

A current change in one conductor induces an EMF in a second conductor. 

 

The EMF induced in the second coil is 2

2 2

B
d

N
dt

!
" = #  where 

2B
!  is the magnetic flux 

through one turn of the second coil due to current I1 in the first coil, as the coils are linked 
magnetically. 
2 2 1

21 1

B
N I

M I

! "

=
 

where M21 is the mutual inductance. 
2 2B
N !  is the total magnetic flux through the second coil. 

2 2

21

1

B
N

M
I

!
= = total flux through the second coil due to 

1
I . 

Therefore 1

2 2 21

B
d dI

N M
dt dt

!
" = # = #  

Similarly, a changing current I2 n coil 2 induces an EMF 
1
!  in coil 1. 

1 2

1 1 12

B
d dI

N M
dt dt

!
" = # = #  

This is not self-evident but
12 21

M M M= = . 

Therefore 1

2

dI
M
dt

! = "  and 2

1

dI
M
dt

! = "  where 2 2 1 1

1 2

B B
N N

M
I I

! !
= = . 

Unit of inductance is the Henry. 
1 1

1 1 1 1H WbA VsA s
! !

= = = "  

!!!!!  

!!!!!  

2
!  

Coil 1 (N turns) 

I2 

Coil 2 (N2 turns) 
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Example 8-1 

 
Treat this as an infinitely long solenoid. 

1

1

0
outside

inside o

B

N
B I

L

=

! "
# µ $ %

& '

 

Magnetic flux through 1 turn of the second coil is 1

2 1B o

N
BA AI

L

! "
# = = µ $ %

& '
 

Therefore 2 2 1

2

1

B

o

N N
M N A

I L

! " #
= = µ $ %

& '
. 

e.g.  

3 2

1

2

6

0.5

10

1000

10

25 10 25

L m

A m

N

N

M x H H

!

!

=

=

=

=

" = = µ

 

 
Applications: 

Transformer – maximizes flux linkage as far as possible. 

 
2

2 1

1

N
V V

N
=  

1

2 1

2

N
I I

N
=  

2 1

2 2 1 1 1 1

1 2

N N
V I V I V I

N N
= = . 

 
8.2 Self Induction 

If you try to change the current I through a coil, you will change the magnetic flux giving an 
induced EMF. 

The induced EMF B
d dI

L
dt dt

!
" = # = # . L is the self-inductance of the coil. 

B
Ntotal flux

L
current I

!
= = . 

I1 N2 

Area A 
Length L 
N1 turns 
(long) 

Load N V1 V2 

I2 

I1 
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Devices designed to exhibit inductance are called inductors, which are represented by 
 (a schematic of a coil). Real inductors have “winding” resistances i.e. the wire 

from which they are wound has finite resistance – equivalent to 
, with finite Q. 

What is the sense of EMFs in L and M? 
For L – it tends to oppose the change in I so it helps to keep I flowing. 
For M – it tends to produce I in secondary to produce a magnetic field B which opposes the 
change in

B
! . 

 
Example 8-2 

 
 
Close switch at 0t = . 0I =  for 0t < . 
B R L
V V V

dI
IR L

dt

= +

= +
 

Solution: 

2
1

t

o
I I e

! "#$ %
& '

! "
$ %= #
$ %
& '

 

where 

0

B
V

I
R

=  L

R
! = g 

 
 
Example 8-3 

Self-Inductance of a toroidal coil. 
 

 
 
Apply Ampere’s Law: 

I L 
R 

VL 

VR 

VB 
+ - 

Switch 

I 

t 

B

o

V
I

R
=  

Exponential 
to 0 

V 
VB 

t 

Mean radius R 
Cross-sectional 
area A 
N turns 
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o enclosed

o

B dl I

NI

! = µ

= µ

"!
 

Assume B inside is uniform ( r A>> ) 
Therefore: 

2

2

o

B dl B r

NI
B

r

! = "

µ
=

"

#!
 

B
!  through each turn is 

2

o

B

NIA
BA

r

µ
! " =

#
. 

Therefore 
2

2

oB
N AN

L
I r

µ!
= =

"
. 

e.g.: 

4 2

6

200

5 10

0.1

40 40 10

N

A x m

r m

L H x H

!

!

=

=

=

" = µ =

 

 
Example 8-4 

Self inductance per unit length of a long solenoid, with length L, N turns and area A. 

For an infinite solenoid, 0
outside
B =  and 

inside o

N
B I

L

! "
= µ # $

% &
. 

Flux linking each turn 
B inside

B A! = . 

Therefore for unit length (i.e. N
L

 turns) the total flux linkage is 
2

B o

N N
AI

L L

! "# = µ $ %
& '

. 

Therefore the inductance per unit length is 
2

taninduc ce

o

dL N
A

dL L

! "
= µ # $

% &
 ( )1Hm

! . 

 
8.3 Magnetic Field Energy 
P VI=  

dI
V L

dt
=  for an inductor. 

During time dt  

21

2

dU Pdt

dI
LI dt
dt

LIdI

U LI

=

=

=

=

 

(Energy stored in an inductor) 

Compare this with 21

2
U CV=  for a capacitor. 

Example 8-5 
The ignition coil of a car. 200 sparks / second, 6000rpm, 4 cylinders. 
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Time constant 1
sec

200

L
onds

R
! = <  

22.4
1.2 10

200
L x H

!
" =  

Energy per spark 
2

0.15
2

LI
U J= =  c.f. camera flash 0.05U J= . 

 
8.4 Magnetic Energy Density 

Consider the toroidal solenoid. 
Volume occupied by 2B A r! "  

Therefore the energy density 
( )

2

2 2

2

1 1 1

2 2 2 2

o
NU

u LI I
rA rA r

µ
= = =

! ! !

 

But 
2

o
NI

B
r

µ
!

"
 

Therefore 
2

1

2
o

B
u =

µ
 

This is a general result but it is modified in materials. 
 
9. Course Summary 

See PC 1342 Teaching Web. 
 
Electrostatics 

− Charges 
o Insulators and Conductors 
o Charges on materials 
o Conduction 

− Superposition Principle 
− Coulomb’s Law 
− Electric field 
o Electric dipoles, moments, torque, energy 

− Electric flux 
E

!  
− Gauss’s Law 
− Potential Energy 
− Electric Potential 
− Capacitance 
o Energy in a charged capacitor 
o Energy in the E field inside a capacitor 

 
 
 

2.4 Volts 

12V 5A 

Spark plug 
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Magnetism 
− Magnetic field B 
− Force on a charge moving in a magnetic field 
− Magnetic flux 

B
!  

− Gauss’s Law for B 
− Force on a current element in a B field 
o Magnetic dipole moment of current I in loop of area A 
o Torque of magnetic dipole, energy. 

− Magnetic field due to a moving charge 
− Magnetic field due to a current element (Biot-Savart) 
− Ampere’s Law 
o Maxwell introduced displacement current  modified Ampere’s Law 

− Electromagnetic Induction 
o Faraday’s Law 
o Lenz’s Law 
o Motional EMF 

− Maxwell’s (Summery of) equations 
o Gauss’s Law for E 
o Gauss’s Law for B 
o Ampere’s Law 
o Faraday’s Law 

− Self and Mutual Inductance 
o Energy in an inductor 
o Energy in a B field 

 
10. Techniques 

Look for symmetries, e.g. choose the surface to use while applying Gauss’s Law  - the 
integrations are trivial if you use the right surface. 
 
Break the problem down to a simpler, more manageable problem e.g. a distributed charge. 
 
Use a segment small enough to be regarded as a point charge. 
dq dE E! !  
 
You can attack problems from above or below. 
q E V! !  
But givenE V! , orV E! . Sometimes you can also find q. 


