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Dr. N. Jackson 
 
Books: Hecht (Optics ~ £30) (Smith & King, Optics & Photonics) 
 
1. Electromagnetism and Waves 
2. Geometric Optics 
3. Polarization of Light 
4. Interference 
5. Diffraction 
 
1. Electromagnetism & Waves 
1.1 Maxwell's Equations 
Free space (no dielectrics or magnetic fields) 
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This is the wave equation in free space 
Electromagnetic waves (oscillating E and B fields) can propagate in free space. 
(You should be able to prove the same for the magnetic field) 
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1.2 General solution 
E x] g= f x - vt^ h+ g x + vt^ h 
v = c  
Physical representation f x - vt^ h  is any function that retains its' shape and moves in the x 
direction with a speed v. g x + vt^ h  moves in the negative direction. x = direction of propagation. 
 
1.3 Particular sinusoidal solution 
E x, t^ h=Eo cos kx - ~ t + f^ h

B x, t^ h=Bo cos kx - ~ t + f^ h 
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Where k is the vector along the propagation direction. 

k

~
=mf = c  



PC 2312 - Wave Optics - Notes 

2 
 

This is useful because any function f, g can be made up as a sum of these. 
f x - vt^ h=ao + ai cos k i x + ~ i t^ h! + bi sin k i x + ~ i t^ h!  
The phase f  tells you how many radians the wave is to the "left" of a cos wave. 
cos kx - ~ t +

2

3r
b l = sin kx - ~ t^ h

 
Suppose adding 2 waves where wave 1 follows a path distance a longer than wave 2. 

 
Path delay a. 
Time delay; 

c

a

 
Difference is phase? If a =m, then the phase delay z =2r . For an arbitrary difference a; 
z =

m

2r a

 
Difference Dx  in path corresponds to Dz =kDx . 
Difference Dt  corresponds to; 

m

2r c
Dt =Dz =~Dt

 
 
1.4 Nature of Electromagnetic Waves 
1.4.1 E and B Transverse 
i.e. the oscillation of the E and B fields happens in a plane that is perpendicular to the plane of 
propagation. 
Proof: 
Recall E = f x - vt^ h. Take x as the direction of propagation. 

2y
2Ey

=0

2z
2Ez

=0  
(E relies on x only) 
But for an EM wave propagating in free space, d.E =0. 

2x
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Therefore 

  

!E
x

!x
= 0 . 

If the wave were longitudinal; 

2z
2Ez

! 0. 
Hence wave is transverse. 
 
 
 
 
 
 



PC 2312 - Wave Optics - Notes 

3 
 

1.4.2 E and B perpendicular and in phase 
dxE =-

2t
2B

 
Suppose that; 
E = 0,Eoy cos kx - ~ t^ h, 0_ i . 
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1.5 Complex notation and phasors 
1.5.1 The rules 
e ii = cos i + isin i  
Hence instead of Acos kx - ~ t + f^ h, write Re Ae i kx - ~ t + f] g6 @. 
e.g.: 

  

cos x + y( ) = Re e
i x+y( )!

"
#
$

= Re eixeiy!
"

#
$

= Re cos x + i sin x( ) cos y + i sin y( )!
"

#
$

= Re cos xcos y % sin xsin y + i sin xcos y + i cos xsin y!" #$

= cos xcos y % sin xsin y

 

Then, do the math - it's easier. 
If you then want to know the amplitude of the wave, look at the resulting formula (Ae iz ) 
If you want to know what the wave really looks like, just take the real part. 
cos kx - ~ t^ h  (phase shifted) cos kx - ~ t + z_ i . 
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For the complex case; 
Ae i kx - ~ t] g  Ae i kx - ~ t] ge iz . 
i.e. just multiply by e iz . 
 
1.5.2 Phasors 
Acos kx - ~ t^ h+ Acos kx - ~ t +

3

r
c m

 
Complex representation: 
Ae i kx - ~ t] g+ Ae i kx - ~ t] ge i

3

r
=e i kx - ~ t] gA 1 + e i

3

r_ i  
 
Notice that we can add these in an Argand diagram. 

 

Resulting amplitude: 3 A at phase angle 6
r

. 
 resulting wave is; 
Re 3 Ae i

6

r
e i kx - ~ t] g_ i = 3 Acos kx - ~ t +

6

rc m
 

this is the concept of phasors: represent any wave 
Acos kx - ~ t + z_ i  
as a "phasor" with amplitude A, angle z  to the real axis. Then just add for the resultant wave. 
What about sin kx - ~ t^ h? This is just the same as; 
cos kx - ~ t +

2

r
b l

. 
i.e. multiplied by e - i

2

r

. 
All provided that waves have the same frequency. 
What about the kx - ~ t  bit? This can be regarded as a rotating phasor - because the total 
kx - ~ t + z  changes with time. 
Don't need to worry about this when adding the waves - basically, all of the phasors are 
effectively rotating together. 
 
1.6 Propagation of Light 
1) Huygen's Principle 
All points on a wave can be considered as point sources for the production of secondary 
spherical wavelets. After time t the new position of the wave will be a surface tangent to the 
secondary wavelets. 
(See handout for picture) 
This is known as the Huygen-Fresnel principle. 
 
Fresnel & Kirchoff considered the problem of why the wave doesn't go backwards. (Hecht 10.4 
and appendix 2). "Obliquity factor" of 

2

1
1 + cos i^ h

 
which is 1 in the forward direction, and 0 in the backward direction. 
NB: a plane wave can be considered as a spherical wave at an infinite distance. Limiting case, 
but is often seen. 
 
Rays: pain to keep drawing secondary wavelets. Rays are an artificial construct that describe the 
propagation of the wave front. They are perpendicular to the wave front. (usually) 
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2) Fermat's principle. 
A light ray going from point A to point B will traverse a path that is stationary with respect to the 
variations of that path. 
aka light will always "choose" the shortest way to get from point a to b. 
(time taken is a minimum, maximum or a saddle point) 
Subsequent sections will use both for reflection, refraction, focusing, … 
 
Sidenote: 
Geometric optics refers to the case where all of your equipment is much bigger than the 
wavelength of the light you are considering. Hence you can ignore most of the aspects of the 
wave nature of life. e.g. a tendency for the light waves to spread out at the edges. This tendency 
leads to interference and diffraction, which we ignore in section 2. 
In geometric optics, use rays (direction of travel of the wavefront. Perpendicular to the wavefront.) 
Wave optics is sections 4 and 5. It is basically how waves and wavefronts behave when 
interacting with systems which are not hugely bigger than the wavelength of light. (Wave aspects 
of light) 
Photon optics is how light behaves when interacting with matter, and low light levels. (Photon 
aspects of light) This is covered in later courses. 
Either way of regarding the light is not 100% correct - it depends on what your experiment is 
about. 
 
2. Geometric Optics 
2.1 Law of Reflection 
By wavefronts: 

 
A wavefront comes into contact with a reflecting surface. Each point on the wavefront acts as a 
point source, carrying on the wave. When in contact with the surface, the secondary wavelet will 
be in the opposite direction - reflected by the material. 
The reflected wavefront will be going out at exactly the same angle from that it came in at. 
Angle of incidence = angle of reflection. 
 
By Fermat: 
Reflecting surface again. A light ray is going from point A to B, using the reflecting surface.  

 
The travel time of the ray is equal to the path length divided by the speed of light. 



PC 2312 - Wave Optics - Notes 

6 
 

t =
c
1
h 2+ x 2] g2

1

+ h 2+ a - x^ h
2_ i 2

1

; E

 

We need dx
dt

=0 to find the value of x that gives a stationary travel time. 
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Rearranging gives 
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a - x

 

By inspection, x =a - x  so x = 2
1
a. 

tan i i = tan i r

i i = i r  
 
2.2 Refraction: Snell's Law 
Consider propagation into different media. The light will travel at a different velocity. (In a 
medium, you have extra separable charges that can "wobble around". The EM light waves starts 
these wobbling, which then generate their own EM waves. Those will then interact with the 
original EM wave. Thus you have to add in lots of generated waves - that will give you a phase 
retardation in the original wave. The wavefronts of the resultant wave tend to travel at a different 
speed.) 
 
2.2.1 By Huygens 
Wavefront picture: 

 
Refractive index; 
n1=

v 1

c

n2=
v 2

c

 
Normally, n is a function of the wavelength. 
t 1=

n1

c
dsin i

t 2=

n2

c
dsin r

 
For sanity, t 1= t 2. (the wavefront must be continuous) 

  
n

1
sin i = n

2
sin r . This is known as Snell's law. 
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2.2.2 By Fermat's Principle 
See example sheet. 
 
2.2.3 Total Internal Reflection 

 
Ray refracts to the normal. (Rare  dense) 

 
Ray refracts away from the normal. (Dense  rare) 
At the point where the wave does not refract into the rare medium any more, the light approaches 
at a critical angle i c . 
nd sin i c =nr

i c= sin - 1

nd

nrb l
 

If the wave enters at greater than i c , there is no refracted ray. The wave reflects. This is known 
as total internal reflection. 

 
! > !

c
: no refracted, all of the wave reflects back. 

 
(Hecht p123) 
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Applications: 
- Optical fibres (a core, with cladding around it. Light at a sufficiently narrow angle, the ray will go 
down the line using multiple TIR) 
- Prisms 

 
 
For a vacuum, n =1. 
In most glasses, n =1.5. 
Water is about 1.33. 
In a diamond, n =2.4. 
2.3 Focusing, mirrors and Lenses 
2.3.1 Images formed by mirrors 
Flat mirror; 

 
Observer sees rays as though coming from O'. 
 formation on an image. 
In this case, it is known as a virtual image. 
- You cannot form this image on a screen 
- Opposite side of device from the outgoing rays. 
When you look into a mirror, you see yourself back-to-front. But why not upsidedown? 
(Look in Young for why) 
 
Curved mirror: 
Think about a spherical mirror, with radius of curvature R. 
See handout for derivation. 

U

1
+
V

1
=
R

2

 
Comment: if u =3  the rays converge at; 

V

1
=
R

2

 i.e. V =
2

R

. 
Therefore, rays close to the axis coming in parallel to the axis converge to a focal point 
f =

2

R

. 
Note that this is exactly true for parabolic mirrors (via the definition), but approximately true for a 
spherical mirror for rays close to the axis. 
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With the image formation, provided the paraxial consideration holds true, all the rays will 
converge at P', before coming out at separate directions. So for a viewer looking at an angle at 
the mirror, there is an image formed at P'. This is a real image, i.e. it is on the same side of the 
optical device as the outgoing rays. 
 
Sign conventions: 
We can use the derivation for convex/concave mirrors, as well as for images either side of the 
mirror - assuming the following sign conventions are followed; 
u is positive if the object is on the same side as the incoming rays. (This is almost always true). 
v is positive if the image is on the same side as the outgoing rays. 
R is positive if the centre of curvature is on the same side as the outgoing rays. 
 
Suppose that instead of a point image, we have a non-point image. 
We draw rays from each point on the image. Where the rays converge is where the final image 
will be formed. 
Once more, see the handout. 
How big does the image appear? 
Similar triangles: 

hU

hV
=-

u
v

 
The minus sign is due to the image being inverted. 
 
2.3 Focusing and Lenses 
Can do this by rays or by Fermat's principle. 
Bring an image at 0 to a focus at F. Must arrange for the optical path, 

 
n !ds"  

to be equal for all rays. 

 
For the rays going straight through a lens, they spend more time in the lens traveling at a slower 
speed than those going further outside the lens, but a shorter time within it. 
For an ideal focus at F, all the rays should travel for the same amount of time. Thus 

 
n !ds"  gives 

the refractive index over the whole path. 
Thus you need to shape your lens to ensure this. 
The accuracy needed is that the paths need to be equal to within at least 1 wavelength in light. 
thus the accuracy typically needed when grinding mirrors etc. is pretty small. (Think: HST was 
half a wavelength off. This was a big problem.) 
This usually only works for a small field of view, or for paraxial rays, or  both. 
 
Finally; a convex mirror, Again, see handout. 
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2.3.3 Lenses 
- Refraction at a spherical surface; 

 
a = r + a v  
i =a u + a  
Assume all the angles are small.  

  

h

R
= tan!( ) = sin r +

h

v
= tan!

v
( )  

  

sin i =
h

u
+

h

R
 

(Paraxial approximation - angles are small. All the rays are nearly parallel to the axis) 
Snell's Law; 
n1sin i =n2 sin r  
 
Therefore by combining all the equations; 

n1
u
h
+
R

h
b l =n2

R

h
-
v
h

b l

u
n1 +

v
n2 =

R

n1- n2

 
Comment: this is valid only for paraxial rays. However it is possible to find a shape which gives 
perfect imaging of on-axis objects. This is known as a Cartesian Oval. 
 
To do lenses, apply this twice for the two surfaces. 

 
Assume air  glass  air. Hence n1=n3=1. 
Object u1 from the first surface. Image v 1 formed according to; 

u1

1
+
v 1

n
=

R1

n - 1

 
(R is negative, hence the last part is changed around from n1- n2 to n2 - n1. 
This image serves as the object to be re-imaged by the second surface, with object distance 
u 2=- v 1. 
 second surface (glass  air) is; 



PC 2312 - Wave Optics - Notes 

11 
 

-
v 1

n
+
v 2

1
=
R 2

1 - n

 
Finally, eliminating v 1; 

  

1

u
1

+
1

v
2

= n !1( )
1

R
1

!
1

R
2

"

#$
%

&'
. 

For the lens as a whole, the object distance is u1. We are only interested in the final image, not 
the intermediate ones. The image distance is v 2. 

u
1 +

v
1 = n - 1] g

R1

1 -
R 2

1c m
. 

Suppose that we have an object at u =3 . Parallel rays are coming in. By analogy to mirrors, the 
image will be formed at the focal point. Therefore, as v = f  for this particular case; 

f

1 = n - 1] g
R1

1 -
R 2

1c m
. 

This equation is known as the Lensmaker's Equation. f is known as the focal length. 
Therefore; 

u
1
+
v
1
=
f

1

 
Sign conventions dictate that the signs for u and v are as for mirrors. f is positive for converging 
lenses (), and negative for diverging lenses )(.  
 
Typical ray diagrams for lenses; 
Converging lenses. 

 
This is a real and inverted image. 
Source closer than the focal point: 

 
This is a virtual, erect image. 
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Diverging; 

 
(See tutorial 14) 
 
2.3.4 Lens Magnification 
What is the ratio to the height of the image to the height of the object? 

 
From similar triangles: 

hu

hv
=-

u
v

 

f

hv
=-

v - f

hv

 

hu

hv
=-

f

v - f

 
This is often known as the Newtonian law, as it was derived by Newton in Opticks. 
Applications of lenses; 
Correction of vision defects. 
The ideal eye would be able to take an image from infinity, and be able to converge it to the back 
of the eye. It should also be able to do the same for the clinically-defined 25cm length. 
A  myopic eye (short sight) converges too well, and makes the image form in front of the back of 
the eye. A hyperopic eye (long sight) forms the image too far behind the back of the eye. 
The correction of myopia; 
- The far point (furthest point at which you can focus) is closer than infinity. 
 arrange for a lens to make the object at infinity appear as though it was at the far point of the 
eye. This requires a diverging lens with a power that makes the focal point at the far point for the 
eye. 
The correction for hyperopia; 
- Near point > 25cm. 
 make an object at 25cm appear as though it was at the near point of the eye, using a 
converging lens. 
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Telescopes: 
A refracting telescope is designed to increase the angular size of an object. 

 
The eye sees the object at infinity, but inverted. 
 
It will be magnified with angular magnification 

=
angle subtended at objective by object
angle subtended by eye by final image

 
=-

f 2

f1

 
Negative as it is an inverted image. 
You cannot shrink f 2 indefinitely - you would get a very thick lens and hence big angles of 
refraction. The refracting index n depends on the frequency. Thus the focal lengths will depend 
on the frequency of the light - you'll only get a focus on one wavelength. This is known as 
chromatic aberration. 
The solution is to use a reflecting telescope. Use mirrors to form the image using reflection. 
The simplest possible reflecting telescope is essentially a parabolic mirror. 

 
On-axis  single focus. 
One possible solution was given by Newton; the Newtonian telescope. 

 
Here there is a mirror just before the focal point. 
Spherical mirror (Aracebo) 
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Cassegrain: 
Use a parabola as the primary reflector, and a hyperbola as the secondary. The properties of 
these together focus the rays down to a point at the bottom. 

 
Compromise between optical quality and off-axis performance. 
- Change the shapes of the primary and secondary mirrors slightly. 
 
Magnifier: 
You are still trying to get an increase in the angle subtended, but the object is no longer an 
infinity. To do this, use a single converging lens. 

 

 
Angular magnification of approximately; 

 

!
np

f
 

This is the basis of the microscope. 
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Magnification; 

 

v
o

f
o

!

f
"

 

 
2.4 Gravitational Lenses 
- Mass deflects light (in particular, the gravitational field associated with the mass) 
This deflection is very small - predicted by Einstein in 1916. 
a =

bc 2
4GM

 
If the distance from the gravitational source to the photon is b. 
a  is in radians. It will be fairly small, due to the small gravitational constant and the large speed of 
light. Hence you don't see this in everyday life. 
A very large mass is needed: use a galaxy ~ 1041kg . 
The difference from a lens is; 
1) the physical mechanism 
2) "shape" of the lens is very different - not anything like nice focusing properties. - hence instead 
of a single point image, you get multiple distorted images. 
2.4.1 Lens Equation 

 
i Ds=aDls + bDs

i - b =a
Ds

Dls
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2.4.2 Image Formation 
For real galaxies, a  is roughly constant with b - i Dl . 
Two equations must be satisfied at once. 

 
Multiple images are found, where the equation lines meet. You will get 3 or 5 images in a 
gravitational lens system involving only one focusing object. 
If b  is bigger, then only one image will form. 
In the completely symmetric case, you will get an Einstein ring. 
i =

c 2Dl Ds

4GMDls

 
 
An alternative method is using Fermat. 
 
 
3. Polarization 
3.1 Polarization: the Pictures 
3.1.1 Plane Polarized 
The wave that came straight out of Maxwell's equations is one with an oscillating electric field, 
and an oscillating magnetic field at right-angles to the electric field. The direction of propagation is 
ExB. 
The E vector in this case is always in the same plane, varying in magnitude at any particular 
point. Hence the name "plane polarized". The plane of polarization is the plane containing the E 
vectors and the direction of motion k. 
Normally forget the B fields (it can be calculated from the E field.) 
 
3.1.2 Unpolarized 
Most light sources don't produce plane polarized light - in general they produce unpolarized light. 
It has random and rapid change of polarization plane, with a timescale ~10 - 8

s . (Atoms are 
disturbed by particle collision, etc.) 
Result: any observer integrates over a lot of these changes effectively sees equal amounts of E in 
every direction. 
It is also possible to see partially polarized light. 
 
3.2.1 Circular Polarization 
This is where there is an E-vector of constant magnitude, but the plane of polarization rotates. 
The envelope that is traced out is a helical envelope (The shape is a helix). The E vector varies in 
direction, but has a constant magnitude. 
Right-hand circular if the E vectors are rotating anticlockwise as seen by an observer looking 
backwards along the ray. 
The more general state is known as elliptical polarization. 
Plane rotates, but the magnitude of the E-vectors is not constant. 
In other words. the tips of the E-vectors trace a squashed helix - elliptical in projection. 
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3.2 Polarization: the Maths 
3.2.1 Linear Polarization 
Assume that the wave is traveling in the z-direction. 

  
E = îE

ox
cos kz !"t( ) + ĵE

oy
kz !"t( )  

This is the equation of a traveling wave going along the z-axis. 
The E vector is at some angle in the x-y plane, but is perpendicular to the z-axis. 
 Hence Eox  and Eoy  
The oscillations in the x-y plane are in phase. 
No phase shift (or 180 degree phase shift) between the x and y components. 
Aside: A 180 degree phase shift is the same as multiplying by e ir , or -1. 
The angle to the x-axis is given by; 
tan - 1

Eox

Eoy

 
The amplitude of the wave is; Eox

2

+ Eoy

2

. 
 
3.2.2 Circular Polarization 
Phase shift of 90 degrees (or -90) between the oscillation in the x and y directions. 
E = iEo cos kz - ~ t^ h+ jEo sin kz - ~ t^ h

E = iEo cos kz - ~ t^ h+ jEo cos kz - ~ t -
2

r
b l

 
The other hand is; 
E = iEo cos kz - ~ t^ h- jEo sin kz - ~ t^ h 
The scalar amplitude is constant. 
The amplitude of this wave is; 

 
E = Eo

2

cos2 kz - ~ t^ h+ Eo

2

sin2 kz - ~ t^ h=Eo  
Other hand of polarization has a -90 degree phase shift. 
Add circularly polarized waves of the opposite hand. 

  
E

1
= î + ĵ , 

  
E

2
= î ! ĵ  

  
E = E

1
+ E

2
= 2îE

o
cos kz !"t( )  

This is then linear polarization. 
 
3.2.3 Elliptical Polarization 
E = iEox cos kz - ~ t^ h+ jEoy cos kz - ~ t + f^ h 
At any point, the E-vector rotates around an ellipse. 

 

  

tan2! =

2E
0x

E
0y

cos"

E
0x

2
# E

0y

2
 

This equation will not be needed in the exam. 

 

A

B
 is a function of Eox , Eoy  and f . 
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3.2.4 Unpolarized Light 
Can represent unpolarized light as the sum of two orthogonally linearly polarized waves of equal 
amplitude but whose phase difference varies rapidly and randomly. 
 
3.2.5 Stokes Parameters 
These are four parameters that between them specify the state of polarization. 
I =< Eox

2

>+< Eoy
2

> 
This is related to the intensity. 
Q =< Eox

2

>- < Eoy
2

> 
This is related to linear polarization along the x-y axis. 
U =< 2Eox Eoy cos f > 
This tells you the linear polarization at 45 degrees to the axis. 
V =< 2Eox Eoy sin f > 
This is the amount of circular polarization. 
In general, for unpolarized light, I =1, but Q =0 as the average of Eox

2

 is the same as that for 
Eoy

2

. 
These parameters can be put into vector form. 

  

I

Q

U

V

!

"

#
#
#
#

$

%

&
&
&
&

=

2I
0

2I
1
' 2I

0

2I
2
' 2I

0

2I
3
' 2I

0

!

"

#
#
#
#
#

$

%

&
&
&
&
&

 

 
3.3 Generating Polarized Light 
3.3.1 Reflection 

 
ni sin i i =nr sin i r  
If a =90 o, the reflected ray is completely polarized. 
Therefore; 
i i + i r =90

o

sin i r = cos i i  
Putting this into Snell's law; 
ni sin i i =nr cos i i

tan i i =
ni

nr

 
This is known as Brewster's Angle. 
 
If an EM wave is passing through a medium, the atoms will oscillate and produce with EM waves, 
interacting with the original waves. Hence why the speed of light is not c in media (phase 
retardation). This also explains a =90 o, as the dipoles in the atom have a non-uniform radiation 
pattern, and in particular they don't radiate along their length (the way they are oscillating) - dipole 
radiation. 
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The reflected ray is generated using the dipoles. If the waves coming in are polarized, then the 
atomic oscillations will also be polarized in the same way when the waves "hit" them. Hence 
radiation given out at the angle of refraction. 
 completely polarized ray. 
The refracted ray will be slightly polarized, as it will loose some of the possible angles due to the 
dipole radiation. 
 
General case (don't learn); 
The reflection coefficient for the waves parallel and perpendicular to the wave are as follows; 

Rpar =
tan i i + i r^ h

tan2 i i - i r^ h

Pperp=
sin i i + i r^ h

sin2 i i - i r^ h

 
Obviously, if i i + i r =90

o , Rpar =0. 
 
Generally, for i i < 60

o  both components are small and the reflected ray is rather weak. 
e.g. for air  glass (n~1.5) 
i i =5

o

i r =3.3
o

Rpar =0.0396

Rperp=0.0405 
Near the Brewster angle, i i =60

o; 
Rpar =0.02

Rperp=0.18 
 
3.3.2 Scattering 
Pass an unpolarized EM wave into a medium containing dipoles. Then pass in an EM wave 
(polarized) oscillating in the y direction. This will kick the dipole, along the direction of the E wave. 
As before, the dipole won't radiate along its' axis. It will radiate in a plane in the x-z axis, with 
nothing in the y-axis. 
Suppose instead we put in something polarized in the x-direction. Here, it will radiate in the y-z 
plane. Nothing in the x direction. 
Remember that unpolarized light can be considered as the sum of polarized components, but 
with a rapidly varying phase shift and amplitude. 
So with unpolarized light coming in, we can consider the output as a combination of the above 
results. 
There will be lots of radiation (unpolarized) in the forward direction. To one side (at 90 o), 
polarized. 
 
In an active galactic nucleus, we have a light source. In some types of galaxy, we have an 
obscuring material so we can't see the light source directly. Outside this, we have dust, electrons 
etc. The light source will excite the EM material. Hence looking at the light source, we will see 
light that has been scattered at 90 o , and we will see this light to be polarized. 
 
3.3.3 Dichroism 
This is the "brute force approach" - get some unpolarized light, and selectively absorb one 
component. 
e.g. using a piece of Polaroid. 
Some of the intensity of the input wave is obviously lost. Overall, the intensity is reduced by; 
I =

2

I o

 
If polarized light is put through the Polaroid, then the output intensity for the input light absorbed 
at i  is I o cos2 i . This is Malus's Law. 
Hence at i =0, you get I o. At i =90, 0. 
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Polaroid etc. use strings of conducting molecules. These have a preferred axis along which it can 
be oscillated. Hence it absorbs the light at the correct direction, while ignoring that at the wrong 
angle. 
This will originally done with quinine derivatives. 
 
Typical applications include sunglasses (to cut out reflected glare). (horizontal or vertical?) 
 
3.3.4 Birefringence 
There are two types of crystal - some are isotropic, where n (and hence v) is independent of 
polarization and propagation direction, and others are birefringent, which is the opposite of the 
isotropic conditions. 
The simplest birefringent crystals are known as "uniaxial" crystals, e.g. quartz and calcite. There 
exists a set of axis x,y,z^ h such that v z=v x ! v y  where v x  is the velocity of the wave with the E-
vector oscillation in the x-direction (propagating perpendicular). 
Obviously in this case the y-direction is special. This is known as the optic axis. 
Suppose you have a wave propagating along the optic axis, the only way the electric field can 
oscillate is in the x-z plane. Hence all components of polarization travel at the same speed. 
When the wave propagates perpendicular to the optic axis, This will separate out the oscillations 
along the direction of the x-axis from those of the z-axis. Any portion of the wave which is 
polarized along the y-axis travels at a different speed from that polarized along the x-axis. 
e.g. in calcite, v y > v x =v z . 
The consequence of this is that phase shifts will occur between the different polarizations. This 
allows us to manipulate polarized light. 
Say a circularly polarized light is traveling along the z-axis. 
Eo icos kz - ~ t^ h+ Eo jcos kz - ~ t +

2

r
b l

 
Using birefringence, we can arrange to turn the r /2 into 0, where the circulised polarized light 
becomes linear. 
Thus, you can use calcite to change the polarization of light and phase angle very specifically. 
 
Consequence 1 
Unpolarized source in calcite (unpolarized - emits all polarizations in all directions) produces two 
sets of orthogonally polarized wavefronts. 

 
Remember that anything propagating along the optic axis has the same speed no matter the 
polarization. 
Part of the wavefront propagates perpendicular to the optic axis: polarization parallel to the optic 
axis travels faster - ends up with a non-circular wavefront. 
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Consequence 2 
Unpolarized light on calcite. 

 
Nothing odd - polarization is parallel to the optic axis. 

 
Vector combination of perpendicular to OA and parallel to OA. 
You end up with non-spherical wavefronts (because of the velocity differences between along the 
OA and up-down) 
Effectively (rays): 

 
Deviation of the different polarizations of light - can separate out different polarizations of light. 
 
3.4 Retardation plates 
These manipulate polarization. 
 
3.4.1 General Principle 
Cut BC so that OA is parallel to the surface. 

 

Extraordinary ray: 
  

v
||
=

c

n
e

  Ordinary ray: 
  

v
!
=

c

n
0

 

 (In calcite, parallel propagates faster that perpendicular) 
Effect is to introduce a phase shift between light of orthogonal polarizations - wavelength 
dependant. 
Block of thickness d; 
Path difference 

 
= dn

o
! dn

e
 

Phase difference: 
  

!" =
2#

$
n

0
% n

e
( )  where 

  
n

0
! n

c
( )  is the phase difference. 

 



PC 2312 - Wave Optics - Notes 

22 
 

 
3.4.2 Quarter Wave Plates 
Thickness is chosen such that 
Dz =

2

r

 
Plane-polarized light enters at 45 degrees to the optic axis. 
 exiting light has the two components of polarization of equal magnitude but with an induced 
phase shift Dz_ i  (as up-down has gone faster than left-right) of r /2. 
Eo icos kz - ~ t^ h+ Eo jcos kx - ~ t -

2

r
b l

 
 circular polarization. 
Circularly polarization in  plane polarized out. 
- Plane polarized at 0 degrees or 90 degrees - unchanged. 
20, 30, etc. degrees plane polarized will become elliptically polarized light. 
Elliptical into QWP - elliptical out. 
Occasionally (if axis ellipse along optic axis)  linear out. 
Unpolarized in QWP  unpolarized out. 
 
3.4.3 Half-Wave Plate 
Delay of r . 
Eo icos kz - ~ t^ h+ Eo jcos kx - ~ t - r^ h 
Plane polarized in will be rotated by 2i , but will still be plane polarized. 
- Circular in  circular out, of opposite hand. 
Eo icos kz - ~ t^ h+ Eo jcos kx - ~ t +

2

r
b l

 
 
3.4.4 Full-Wave Plate 
This has a shift of 2r . This is useful as only one wavelength is shifted by this much, other 
wavelengths have different phase shifts. 
Examples of usage; 
Horizontal polaroid  full wave plate set at mo  Vertical polaroid. 
Light at wavelength mo will not pass through the system. 
Light at different wavelengths will have elliptically polarized light after the FWP, hence you will get 
some light coming out of the system for these frequencies as some of the light coming out of the 
FWP will be horizontally polarized. 
 
3.4.5 Quartz wedge 
If you have a wedge of quartz, and you put linear polarized light going in at 45 degrees. 
Depending on the thickness of the wedge, you will get different phases of polarization out. 

 
The angle of the wedge can be calculated by the previous formula. 
Thickness d is given by; 

m

2r
d no - ne^ h=

m

2r
Dx =2r

 
Hence you can calculate the apex angle of the wedge; 
tana =

l

d

 
 
3.5 Propagation effects 
3.5.1 Faraday Effect 
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Consider left hand circular and right hand circular light propagating in a region with a magnetic 
field. 

 
One hand of the circular polarization is with the natural electron circulation, while the other is 
against it. There will be different refractive indexes for LCP and RCP  there will also be different 
velocities. 
Consider plane polarized light as equal to a superposition of both LCP and RCP light. 
Inducing phase shifts between left and right circular - you will end up rotating the plane of linear 
polarization. 
i =VBd  
where i  is the angle the linear polarization is rotated by, V a constant, B the B-field, and d the 
thickness. 
In astronomy, you can work out the properties of the foreground material of a radio source. 
Typically, B is around 10 - 11T , but d is very large. Hence you can get quite large rotation. 
 
3.5.2 Kerr Effect 
This is where instead of a magnetic field, you use an electric field. The molecules have a dipole 
moment, hence they line up along the electric field. You then have an optic axis, where all of the 
molecules are aligned up in a preferred direction. 
Hence; 
ne - no=mo kE

2 
(Do not learn this) 
 
4. Interference 
4.1 Principles 
4.1.1 Definition 
Interaction of a finite number of light waves giving a resultant amplitude Etot  governed by the 
principle of superposition and intensity by Etot

*
Etot . 

 
4.1.2 Principle of Superposition 
The maths: 

2x 2
22 }

=
v 2

1

2t 2
22 }

 
Suppose we have the following solutions; 
} 1= f x - vt^ h

} 2=g x - vt^ h 
then } 1+ } 2 is also a solution. 

2x 2
22 } 1+ } 2_ i

=
2x 2
22 } 1

+
2x 2
22 } 2

=
v
2

1

2t 2
22 } 1

+
2t 2

22 } 2

d n=
v
2

1

2t 2
22 } 1+ } 2_ i

 
Generally; 
c i } i!  is a solution. 

 
The physics; 
Suppose that } 1 is a solution with velocity v 1, and } 2 is a solution traveling at v 2, then the 
resultant at any time and place is the sum of the disturbances as they would appear if the other 
were absent. 
 
4.1.3 How to do the addition 
(Phasors) 
Suppose you have two waves; 
A1cos kx - ~ t + f 1^ h 
A2 cos kx - ~ t + f 2^ h 
Use an Argand diagram; 
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Hence; 
A

2

= A1cos f 1+ A2 cos f 2^ h
2

+ A1sin f 1+ A2 sin f 2^ h
2

A
2

= A1

2

+ A2

2

+ 2 A1 A2 cos f 1cos f 2+ 2 A1 A2 sin f 1sin f 2

A
2

= A1

2

+ A2

2

+ 2 A1 A2 cos f 1- f 2^ h  
The last part of this is called the interference term. 
Aside; 
tan f A=

A2 cos f 2+ A1cos f 1

A2 sin f 2+ A1sin f 1

 
If you have two waves with a constant phase relation f 1- f 2= const^ h you need to add the 
amplitudes of the waves. They are known as coherent waves. 
Intensity= A

2

. 
If you don't, i.e. over time <cos f 1- f 2^ h>=0 then you can get away with adding the intensities. 
These are incoherent. 
 
4.1.4 Conditions for interference 
- Constant phase relation 
Any light used must have a restricted range of frequencies. (strictly speaking, 0). 
If you have a finite range Df  present, then the different frequencies will get out of step. 
Dt ~

Df

1

 
In practice, you never get perfect temporal coherence in a wave train. There are a number of 
reasons for this; 
- There is a limit set to any emission process that causes natural broadening - the uncertainty 
principle. 
- Collision broadening 
- Doppler broadening - atoms / molecules are in thermal motion. Different line of sight velocities. 
 
- Spatial coherence; 
If you have a Young's Split setup, with light coming in, then the light between the two slits will 
have a constant phase relation. If there are random corrugations in the wave front, you will not 
get a constant phase relation between the two slits. 
Here you can define a coherence length across the wave front for which the light is spacially 
coherent. 
How far across the wavefront do you need to go before the wave is not coherent. 
 
- Temporal coherence 
How far down the wavefront do you have to go before the waves get out of step? 
e.g. range of frequencies. Waves get out of step. <cos f 1- f 2^ h>=0 
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Types of interference 
- Division of wavefront 
Select 2 parts of a wavefront and use them as interfering waves (as sources of secondary 
wavelets). 
(use slits. Secondary wavelets will be those two generated by the parts that pass through the 
slits.  interference pattern if coherent. This is Young's Slits) 
- Division of amplitude 
Select one part of the wavefront, split it in two, delay one part with respect to the other, then re-
add them. 
e.g. Michelson inferometer 
(think: Aether experiment, Michelson-morley) 
 
In both cases, you need to have coherent light. 
 Use a laser. 
 
4.2 Interference by division of wavefronts 
4.2.1 Young's Slits 

 
The approximation is that the distance to the screen is large enough that the rays arrive at it 
roughly in parallel. This gives us Fraunhofer diffraction. 
Path difference is dsin i . 
Phase difference is; 
kdsin i =

m

2r
dsin i

 
If this phase difference is 0, 2r , 4r , … you will get constructive interference as the waves will 
reinforce each other. 
If r , 3r , … you will get destructive interference, and the waves will cancel. 
- Intensity distribution; 
First wave; 
E1=Eo e

i kx - ~ t + z] g 
Second wave; 
E 2=Eo e

i kx - ~ t + z] ge i
m
2r

dsin i  
This is because in complex notation a phase shift of z  is the same as multiplying by e iz . 
Total intensity =E * E  where E =E1+ E 2. 
E1+ E 2=Eo e

i kx - ~ t + z] g1 + e i
m
2r

dsin i_ i

E * E =Eo

2

e - i kx - ~ t + z] ge i kx - ~ t + z] g1 + e i
m
2r

dsin i_ i 1 + e - i
m
2r

dsin i_ i

E * E =Eo

2

1 + e i
m
2r

dsin i_ i 1 + e - i
m
2r

dsin i_ i

E * E =Eo

2

2 + e i
m
2r

dsin i + e - i
m
2r

dsin i_ i  
But; 
e iz + e - iz =2cosz  
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So; 

E * E =Eo

2

2 + 2cos
m

2r dsin i
c md n

 
also; 

1 + cosz =2cos2
2

z

 
So; 
E * E =4Eo

2

cos2

m

r dsin i
c m

 
If i  is small, then; 
sin i . tan i =

L
y

 
So; 

Intensity =4Eo
2

cos2

mL

r yd
d n

 

 
The first maximum will happen when; 

mL

r yd
=r

 
So; 
y =

d
mL

 
So the separation of the interference patterns on the screen is mL d . 
 
4.2.2 Lloyd's Mirror 
Suppose that you have a single source of light observed by an observer a height y above the 
ground. Suppose there is also a mirror, and light bounces off the mirror to the observer. 

 
Is this exactly equivalent to young's slits? It is almost - there is only one problem. 
The light reflecting off an optically denser surface has a phase change of r . 
The reason is complicated - it is essentially the same as the Frenel coefficients. 
 the mathematics is almost the same, but instead of cos2 write sin2. 
So; 

Intensity =4Eo
2

sin2

mL

r yd
d n
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4.2.3 Three slits 

 

Here, The first slit has 
  
E

o
e

i kx!"t( )
e

! i
2#

$
d sin%

, second 
 
E

o
e

i kx!"t( ) , third 
  
E

o
e

i kx!"t( )
e

i
2#

$
d sin%

. 
Putting all this together, the resultant wave is; 
Eo e

i kx - ~ t + f] g1 + e i
m
2r

dsin i + e - i
m
2r

dsin i_ i

=Eo e
i kx - ~ t + f] g

1 + 2cos
m

2r dsin ic md n
 

We are interested in the intensity distribution. 

E * E =Eo
2

1 + 2cos
m

2r dsin i
c md n

2

E * E =Eo
2

4cos2

m

r dsin i
c m- 1d n

2

=Eo
2

4cos2

mL

r dy
d n- 1e o

2

 

 
 narrower main peak, but small subsidiary peaks. 
Decreasing the separation of the slits will increase the width of the fringes. Increasing the 
wavelength will also increase the width. 
 
4.2.3 n Slits 
Generally as the number of slits increases, the central peak gets narrower and more subsidiary, 
small peaks appear. 
Total amplitude is; 
Eo 1 + e iz + e i2z + ... + e inz^ he i kx - ~ t] g 
Where 
z =

m

2r
dsin i

 
 
Side-note (do not learn this); 
1 + x + x 2+ ... + xN - 1] g! =

x - 1
xN - 1
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So; 
A =Eo e

i kx - ~ t] g

e iz - 1
eNiz - 1

=Eo e
i kx - ~ t] g

e 2

1
iz e 2

1
iz - e -

2

1
iz_ i

e 2

1
Niz e 2

1
Niz - e -

2

1
Niz_ i

=Eo e
i kx - ~ t] g

e 2

1
iz sin

2

zd n

e 2

1
Niz sin

2

Nzd n

 
This is the total amplitude. The same thing can be done for the intensity using; 

I =A * A =Eo

2

sin2
2

z
d n

sin2
2

Nz
d n

 

where 
  

! =
2"d sin#

$
 

You should be able to prove that if N =2, it reduces to the earlier formula for Young's slits  
 cos

2 . 
 
The method used so far was Division of wavefronts. Now, look at division of amplitude - i.e. 
where we take one wave, and split it into two, allow one to go along a different path, then interfere 
them. 
 
4.3 Michelson Interferometer. 

 
 
4.3.1 Basic principle 
The compensator plate is exactly the same thickness as the beam splitting plate. It is used to 
compensate for the extra path length in glass of the other beam. 
The path difference Dd =2 d 1- d 2^ h. 
The output amplitude is; 
Eoutput =Eo e i kx - ~ t] g+ Eo e i kx - ~ t] ge m

2r
iDd  

We have exactly the same maths as the young's slit experiment, despite having a different setup. 
So; 
I =4Eo

2

cos2

m

r Dd
c m

 
As the movable mirror is moved, you change Dd . 
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Fringes will be m apart in units of Dd . 
So they will be m 2 apart in units of mirror motion. 
This is an extremely sensitive way of measuring motion. It allows you to measure the motion to 
the order of m. 
 
4.3.2 Michelson Interferometer as spectrometer: (i) sodium doublet 
Use it where the input light is a sodium doublet, rather than a monochromatic source. These are 
two closely spaced lines. 

 
!"  is the separation between 2 lines. 
What will happen to the intensity as the mirrors move? 
Each spectral line will produce a separate fringe system. These will be mutually incoherent. 

 
 Ddmin, fringe patterns get out of step. 
Ddmin is given by requirement of 1 2 oscillation difference between m1 and m2. 

m1

Ddmin
=

m2

Ddmin
+
2

1

 
Ddmin

m1m2

m2 - m1^ h
=
2

1

Ddmin=
2 m2 - m1^ h

m1m2

Ddmin=
2Dm

m2

 
Hence, we can work out Dm. 
 
4.3.3 General frequency input 

 



PC 2312 - Wave Optics - Notes 

30 
 

Each bit of the frequency spectrum produces its' own cos2 fringes with; 

dI =4I f] gcos2
c

r fDdb l df

=2I f] g1 + cos
c

2r fDdb lc mdf
 

(Each bit is incoherent with each other). Now, add them all (intensities). 
I Dd^ h= 2I f] g1 + cos

c
2r fDdb l df

0

3

#

I Dd^ h= const.+ I f] gcos
c

2r fDd
df

0

3

#
 

This is a type of Fourier transform. The frequency power spectrum of the input light is a Fourier 
transform of the fringe contrast as a function of delay. 

 
 
4.3.4 White light fringes 
If you put white light in, you only get fringes if Dd . 0 as white light consists of a large range of 
frequencies, so each of these frequencies will give you a different interference pattern that will 
only be in phase if Dd =0, and will quickly come out of phase and hence the intensity will go to 0. 
These fringes will disappear if; 
Dd .

2Dm

m2

 
this also means that you can work out filter bandwidths. 
 
4.4 Thin Films 

 
Difference in optical path Ray 1 has traveled from A to C while Ray 2 has traveled from A to B. 
Now   AB = 2d tan r  
   AC = 2d tan r sin i  

  

Difference =
2dn

cos r
! 2d tan r sin i

= 2d
n

cos r
! tan r "n "sin r

#
$%

&
'(

= 2d
n ! nsin

2
r

cos r

#

$%
&

'(

= 2dncos r

 

This is useful for later - Fabry-Perot etalon. 
 
If   2dncos r = m!   destructive interference. 
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If 
  

2dncos r = m +
1

2

!
"#

$
%&
'   constructive interference. 

(division of amplitude) 
Outcome: coloured bright / dark bands at different wavelengths. 
 
4.4.2 Use in Anti-Reflection coatings 
Recall from section 3 that the reflection coefficients 

  

R
!
=

sin
2
"

i
#"

t( )
sin

2
"

i
+"

t( )
   

  

R
||
=

tan2
!

i
"!

t( )
tan2

!
i
+!

t( )
 (don't learn these!) 

Near normal incidence, both become 

  

R =
!

i
"!

t( )
2

!
i
+!

t( )
2
=

n "1( )
2

n +1( )
2

 

Remember Snell's law  
 
!

i
= n!

t
. 

e.g. glass   n !1.5  
Reflection coefficient   R ! 0.04  
If air  glass, R becomes 

 
n

i
! n

t
. 

  

R =

n
t

n
i

!1
"

#$
%

&'

2

n
t

n
i

+1
"

#$
%

&'

2
 

Optical systems loose light on reflection. The trick is to coat glass so that reflected waves cancel. 

 
For A, B are !  out of phase and of equal amlitude. 

  

2dn
c

cos r( ) = m +
1

2

!
"#

$
%&
'   in this case destructive. 

Also want equal reflection coefficients at both interfaces. 

  

n
c
!1

n
c
+1

"

#$
%

&'

2

=

n
g

n
c

!1

"

#
$

%

&
'

2

n
g

n
c

+1

"

#
$

%

&
'

2
( n

c
= n

g
 

 choose thickness and refractive index of coating  no reflection. 
This is why camera lenses are purple. 
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4.5 Fabry-Perot Etalon 
4.5.1 Basic Principle 

 
Glass plates: 
Accurate separation and very reflective coatings. Intensity coefficient ! , transmission coefficient 
!  

 
Phase shift between rays? - same geometric argument as thin films. 
Path difference   = 2d cos!  

Phase difference 
  

! =
2"

#
2d cos$  

Amplitude difference between successive rays 

   

! = ! " !
2reflections

!"# $#
= !

#

$
%
%

&

'
(
(

 

 
4.3.2 Intensity Distribution 

  
E = E

o
e

i kx!"t( ) # +#$e
i%
+#$2

e
i 2%

+ ...( )  

But binomial expansion 
  
1! x( )

!1

= 1+ x + x
2
+ x

3
+ ...  

So; 

  

E = E
o
!e

i kx"#t( ) 1

1" $e
i%

 

  

I = E * E = E
o

2! 2 1

1" #e
i$

1

1" #e
" i$

=
E

o

2! 2

1+ #2 " 2#
e

i$
+ e

" i$

2

%

&'
(

)*

=
E

o

2! 2

1+ #2 " 2# cos$
 

 

cos! = 1" 2sin
2 !

2

#
$%

&
'(

#

$%
&

'(
 

  

I =
E

o

2! 2

1+ "2 # 2" 1# 2sin
2 $

2

%
&'

(
)*

=
E

o

2! 2

1# "( )
2

1+
4"

1# "( )
2

sin
2 $

2

%
&'

(
)*

%

&
'
'

(

)
*
*
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(reminder: 
  

! =
2"

#
2d cos$ ) 

Vary 
 
!,"   vary !  peaks in intensity. 

Peaks if   ! = 0,2",...,2m"  

In that case, 
 

sin
2 !

2
= 0   

  

E
o

2! 2

1" #( )
2

  large! 

Peaks very steep and sharp. 

 
 
4.5.3 Variation with !  
Extended monochromatic source 

 

  

! =
2"

#
2d cos$  

Peaks at values of ! such that   ! = 2m" . Suppose ! is small; 
 

cos! "1#
!

2

2
. 

 
  

! =
2"
#

2d 1$
% 2

2

&

'(
)

*+
= 2m"  

(! in radians) 

  

!
2

2
= 1"

m#

2d
 

Only see fringes for certain !   will see concentric rings on the screen. Radius will depend on !  
e.g. if you use the Sodium doublet  each ring will be double. 
 high resolution spectrometer (can distinguish to 0.01nm), provided that reflectivity 

 
! " 0.9  or 

more. 
 
4.5.4 White light (Edser-Butler fringes) 

Recall that 
  

! =
2"

#
2d cos$ = 2m" . 

!  constant  ! 0 , range of ! . 

  

! =
2"

#
2d = 2m"  
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Only for certain !  will fringes appear. 

 
 
4.5.5 Important parameters of the FPE 
First calculate !"  (not ! " #  but !"  the width in !  of each interference pattern). 
This controls the spectral sharpness. 
Recall (4.5.1) 

  

I =
E 2! 2

1" p( )
2

1+
4#

1" #( )
2

sin
2 $

2

%

&
'
'

(

)
*
*

 

 
Calculate the width in units of ! . 
Peak falls to half the peak value when 

  

4!

1" p( )
2

sin
2

#
1
2

2
= 1 

Assume 
 

!
1
2

 is small. 

 

!
1
2

2
= 4sin

"1
1" #( )

2

4#

$

%
&
&

'

(
)
)
*

1" #( )
2

#
 

 
 

!
1
2

=
1" #2( )
#

 

Width of peak is 
 

2!
1
2

  
 

1! "

"

#

$
%

&

'
(  (1) 
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Note that delay width of peak is given by 
 

!
+ 1

2

" !
" 1

2

. 

  

=
2!

" +
#"

2

2d cos$ %
2!

" %
"

2

2d cos$  

At peak   2d cos! = m"  (interference condition) 

 delay width

  

= 2!m"
1

" +
#"
2

$
1

" $
#"
2

%

&

'
'
'

(

)

*
*
*
= 2!m"

1

"
1+

#"
2"

%
&'

(
)*

$1

$ 1$
#"
2"

%
&'

(
)*

$1%

&
'
'

(

)
*
*

%

&
'
'

(

)
*
*

 

Using binomial expansion, 

delay width
  

= 2!m 1"
#$
2$

+ ..."1"
#$
2$

...
%
&'

(
)*
=

2!m#$
$

 (2) 

Equate (1) and (2). 

  

!" =
" 1# $( )
%m $

 

3 important parameters; 
 
4.5.5.1 Resolving Power 

  

R !
"

#"
=
$m %

1& %
 

Typically 
 
! " 0.95 . 

  

m =
2d

!
 from interference condition assuming !  small. 

For dynamics, d is the plate separation, ! is the wavelength. 

  m !10
4 (d ! few mm) 

Hence   R !10
5   high == good. 

 
4.5.5.2 Free Spectral Range !"  

 
Cannot observe a very large spectral range without ambiguity ( mth order fringe of one 
wavelength overlaps   m +1th  order of another). 
 free spectral range is the range of wavelength that can be observed at once. 

  

!" =
2d

m
#

2d

m #1
$

2d

m
2
=

"

m
 

assuming m large. 

Typically 
  

!
500nm

10
4

! 0.05nm (terrible!) 
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4.5.5.3 Finesse 

 

F =
!"

#"
 how many spectral lines can fit onto one FSR. 

  

F =
!

m"!
#
$ %

1& %
 

 
! = 0.95     F = 60  
 
5. Diffraction 
5.1 The Maths (& principles) 
5.1.1 Types of Diffraction & Definitions 
 
Interference is the adding together a finite number of waves. Diffraction is interference in the limit 
where the number of waves goes to infinity. To do this, instead of a narrow slit, use a wide slit.  
 
Fraunhofer diffraction is the case where the phase variation is linear across the aperture, i.e. the 
phase difference between each of the waves passing through the aperture is proportional to the 
distance along the aperture. The observer in this case is a large distance away from the aperture, 
hence this is also called far-field diffraction. 
 
The opposite is near-field, or Fresnel diffraction. Here the observer is much closer to the aperture. 
The waves are not linear, as they are all heading to the observer in a spherical pattern rather than 
traveling pretty much parallel to each other. This leads to spherical terms in the maths, which is 
complicated. We will deal with this later in section 5.5. 
 
5.1.2 Wide Slit 

 
A has representation 

 
E

o
e

i kx!"t( )  

 

E
o
= E

tot

dx

a
 

Any other part a distance x down the slit from a has phase difference 

  

xsin!
2"

#
 

  

E
tot

dx

a
e

i kx!"t( )
e

i
2#
$

xsin%
&
'(

)
*+  
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Superposition principle tells you that for coherent light you just add the amplitudes together. In 
this case, we have an infinite number of waves each with a very small amplitude and different 
phase differences. Use integration. 

  

A !( ) = E
tot

dx

a
e

i kx"#t( )
e

2$
%

xsin!

"a
2

a
2&

=
E

tot
e

i kx"#t( )

a

e
i
2$
%

xsin!

2$
%

i sin!

'

(

)
)
)
)

*

+

,
,
,
,

x="a
2

x=a
2

=
E

tot
e

i kx"#t( )

a
$ sin!

%
-
./

0
12

e

i$asin!
% " e

" i$asin!
%

2i

'

(

)
)
)

*

+

,
,
,

=
E

tot
e

i kx"#t( )

a
$ sin!

%
-
./

0
12

sin
$asin!

%
-
./

0
12

= E
tot

e
i kx"#t( )

sinc
$asin!

%
-
./

0
12

 

Remember that 
  

sinc x =
sin x

x
. 

Intensity
  

= I
obs

= A
obs

* A
obs

= E
tot

2
sinc

2 !asin"
#

$
%&

'
()

 

 
Properties of the sinc function; 

 

  

x ! 0

sin x ! x

 

As a result, the central peak is twice as wide as the others. 
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The function is symmetric. The second bump contains about 5% of the peak bump's intensity. 
Subsequent bumps are weaker. 
As the aperture a gets bigger,  sinc

2  function will get narrower. This is rather suggestive of the 
idea of Fourier transform. 
This can also be done a different way - through using phasors. 
Suppose that  ! = 0 . All the phasors add together along the same axis. Hence you observe 

 
E

tot
 

Suppose that  ! " 0 . Take the first part of the wavefront, then add the second on. 

 

Angle 
  

OAP =
2!

"
asin# . 

 
  

1

2
E

obs
= r sin

!
"

asin#
$
%&

'
()

 

 
E

tot
= the length of the arc O  P

  

= 2!r x

2!

"
asin#

2!
=

2!rasin#

"
 

  

E
obs

= E
tot

sin
!asin"

#
$
%&

'
()

!asin"
#

= E
tot

sinc
!asin"

#
$
%&

'
()

 

 
So why the Fourier transform? 
Apply method to an arbitrary slit with throughput variation; 

 

General ray with respect to any reference point has a phase shift of 
  

xsin!.
2"

#
. This can be 

represented as 
  
E x( )dx.e

i kx!"t( )
e

2#

$
ixsin%
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Total field seen at ! , 
  
A !( ) = e

i kx"#t( )
E x( )e

2$

%
ixsin!

dx&  

This looks much like a Fourier transform. The integral part is the amplitude. 
 
i.e. the amplitude of a diffracted wave as a function of !  is the Fourier transform of the 
aperture function 

 
E x( ) , provided we have far-field diffraction. 

 
5.1.3 Reminder of Fourier Methods 

- Orthogonal basis functions 
  

sin
n!x

L

"
#$

%
&'

 and 
  

cos
n!x

L

"
#$

%
&'

, where n is an integer, can be used to 

make up any function in the range  !L " L . 

  

f x( ) = a
o
+ a

n
sin

n!x

L

"
#$

%
&'n

( + b
n

cos
n!x

L

"
#$

%
&'n

(  

where 
  

a
n
=

1

L
f x( )sin

n!x

L

"
#$

%
&'

dx
(L

L

)  etc. 

- Also works for any periodic function with a   2L  repeat. 

 sin  and  cos  are functions of  e
i
n!x

L ,  e
! i

n"x

L . 

  e
i
n!x

L ,  e
! i

n"x

L  are also a set of orthogonal basis functions. 
 periodic functions. 

 
a

n
= f x( )e

! i
n"x

L dx
!L

L

#  

- Suppose we have a repeating top-hat function. 

 

Here 
 

f x( ) = a
n
e

i
n!x

L

"#

#

$ . The height of the peaks is H. 

  

a
n
=

1

L
He

! i
n"x

L dx
!#L

2

#L
2$ =

2H

L

e

i"#
2 ! e

! i"#
2

2in"
L

%

&

'
'
'

(

)

*
*
*
=

2H

n"
sin

n#"
2

%
&'

(
)*

 

Now consider the case where  L ! "  but leave  !L  finite and constant. 
Then harmonics get closer in frequency as !  gets smaller until sum  integral.  

  

f x( ) =
1

2!
a k( )eikx

dk
"#

#

$  and 
 
a k( ) = f x( )eikx

dx
!"

"

#  

Fourier transform pairs 
 
f x( )   FT  

 
a k( ) . 
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5.1.4 Fourier transforms already seen 

- 
 
E x( )   

 
A !( ) . Width 

  

!" #
1

$x
. 

But also; 
If you have a pulse (non-periodic) 

 
f t( )  and want to know the power as a function of frequencies 

which it contains 
 
f !( )  

Then 
 
F !( )" f t( )  

e.g. top-hat pulse from 
  

!
"t

2
 to 

  

!t

2
, 
  

F !( ) = He
" i!t

"#t
2

#t
2$ = H#t sinc

!#t

2

%
&'

(
)*

 

We saw this when we talked about mechanisms of line broadening. (temp. coherence) 
- Michelson interferometer 
Input power !( )  is a fourier transform of the amplitude of the fringes as a function of ! . 

 
  

!f "
1

!!
 

 
 
 
5.1.5 Examples of fourier transforms 
- !  function 

 
! x

o
( ) = "  for 

 
x = x

o
 and 0 elsewhere. 

Area 
  
! x0 = 1 

  
! x

o( )dx
"#

#

$ = 1  

 
! x " x

o( ) f x( )dx
"#

#

$ = f x
o( )  
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Young's slits; 

  

F k( ) = ! x "
d

2

#
$%

&
'(

e
" ikx

dx
")

)

* + ! x +
d

2

#
$%

&
'(

e
" ikx

dx
")

)

*

= e
"ikd

2 + e
ikd

2 = 2cos
kd

2

#
$%

&
'(

 

 
Example; what is the fourier transform of a delta function offset from 0. 

 
What range of frequencies? 

 
F !( ) = " t # t

o( )ei!t
dt

#$

$

% = e
i!t

o  

 e
i!t

o  is something with a constant unit amplitude in ! . Phase shift !" . All frequencies appear at 
a constant amplitude, but different phases so that they all coincide at 

 
t
o

 instead of 0. 
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5.1.6 Tapered aperture (wigwam) 

 

  

f x( ) =
1

a
a ! x( )  between 

  

! a

2
" a

2
, or 

  
f x( ) = 0  otherwise. 

 
A !( ) = f x( )eiux

dx
"#

#

$  where 
  

u =
2! sin"

#
 

  

A !( ) =
1

a
a + x( )eiuk

dk
"a

2

0

# +
1

a
a " x( )eiuk

dk
0

a
2#  

  

aA !( ) = a + x( )
e

iux

iu

"

#
$

%

&
' + ...

=
2

u
2
(

e
iua

+ e
( iua( )

u
2

=
2 ( 2cosua

u
2

=
4

u
2

sin
2 ua

2

)
*+

,
-.

 

 
  

A !( ) =
4a

u
2
a

2
sin

2 ua

2

"
#$

%
&'
= asinc

2 ua

2

"
#$

%
&'
= asinc

2 ( sin!a

)
"
#$

%
&'

 

  

I !( ) = a
2
sinc

4 "asin!
#

$
%&

'
()

 

There is an easier way to do this… 
 
5.2 Convolution 
5.2.1 Principle 

 
Amplitudes of the Gaussians at the end have a size proportional to the height of the delta 
function. 
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5.2.2 Applications 
Stars in the sky (akin to delta functions) convoluted with a telescope (Point Spread Function 
"PSF" i.e. blurring)  stars become a lot bigger and blurred. 

 
If the PSF is too big, you cannot separate the stars out. 
PSF's can also be used in wavelength, e.g. Etalon. 

 

 

!" =
#

1$ #
 

If !"  is too big, you cannot separate out the separate lines. 
 
If you have a circular aperture telescope, then the width of the PSF (the resolution of the 

telescope) is 
  

1.22!

d
 radians where !  is the observed wavelength, and  d  the diameter. 

e.g.; 
Eye,   ! = 500nm  and   d = 1mm   a few arc-minutes. 
Lovell 76m telescope  10 arc-minutes (wavelength is much longer) 
HST; 2.5m at optical  50 milli-arc-seconds. 
MERLIN radio array   d ~ 220km   50 milli arc-seconds. 
 
Can consider aperture functions as convolutions of simpler ones. e.g.; 
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5.2.3 Formal definition of convolution 

Convolution of two functions 
 
f x( ) , 

 
g x( )  defined as 

  
h x( ) = f x '( )g x ! x '( )dx '

!"

"

# . 

Geometric interpretation; 

 
Take the area under 

  
f x '( )g x ! x '( )   this is the value of 

 
h x( ) . Then move onto the next value 

of x. 
Suppose; 

 

 
 
 

g(-x') 
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5.2.4 Convolution Theorem 
The fourier transform of the convolution of two functions 

 
f x( )  and 

 
g x( )  is the product of the 

individual fourier transforms 
 
F u( )  and 

 
G u( ) . 

i.e. 
 
f x( )!g x( ) = h x( )   

 
F u( )G u( ) = H u( )  

(
 
f x( )  FT 

 
F u( )  etc) 

Proof; 

  

x '' = x ! x '

dx '' = dx

h x( ) = f x '( )g x ! x '( )dx '
!"

"

#
H u( ) = h x( )eiuxdx

!"

"

# = f x '( )
!"

"

# g x ! x '( )dx '
!"

"

# dxeiux

= f x '( )g x ''( )dx '
!"

"

# dx ''
!"

"

# e
iu x '+x ''( )

= f x '( )eiux 'dx '
!"

"

# g x ''( )eiux ''dx ''
!"

"

#
= F u( )G u( )

 

 
5.2.5 Application; two wide slits 
Consider two wide slits as convolution of two narrow slits with a single wide slit. 

 
CT implies amplitude diffraction pattern is product of two narrow slit pattern with a wide slit 
pattern. 
i.e. 

 
A

obs
= A

wide
!( ) xA

""
!( )  

  

I
obs

= I
wide

!( ) xI"" !( )

= I
o

sinc
2 #asin!

$
%
&'

(
)*

cos
2 #d sin!

$
%
&'

(
)*

 

 
e.g. if   d = 3a , then the third, sixth and ninth  cos

2  fringes are absent.  diffraction grating; N 
wide slits. 
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5.2.6 Application; tapered slit 

  amplitude  sinc
2 , intensity  sinc

4 . 

 
The two tophats each give  sinc   the wigwam is just  sinc* sinc = sinc

2 . 
 
5.3 Diffraction Grating 
5.3.1 Intensity Pattern 
The diffraction grating is a series of slits, which may be quite wide. 
Suppose for a start that it consists of N infinitely narrow slits. 
From §4.2.4; 

Intensity = 

  

E
o

2

sin
2 N!

2

"
#$

%
&'

sin
2 !

2

 where 
  

! =
2"

#
d sin$  = phase difference between successive slots. 

If the individual slits are not infinitely narrow, we have N wide slits. This can be considered as a 
convolution of N narrow slits and 1 wide slit. 
We know the amplitude of the narrow slits, and that of the wide slit. So we can multiply the two 
intensity patterns to get the diffraction pattern. 

  

I = I
o

sinc
2 !asin"

#
$
%&

'
()

sin
2 N!d sin"

#
$
%&

'
()

sin
2 !d sin"

#
$
%&

'
()

 

 

Separation of peaks such that   d sin! = n" . "Missing orders" whenever 
 

m!

d
=
!

a
 where m is an 

integer.  
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5.3.2 Comments on pattern 
If N is larger, the maxima will get sharper / narrower. 
Grating pattern maxima spacing is inversely proportional to the line spacing on the grating. 
Amplitude of maxima falls off if the width of the lines on the grating is not 0. 
 
5.3.3 Diffraction grating as spectrometer 
The separation of the maxima will be different for different wavelengths. 

 
Second order is twice as wide, hence you get better spectral resolution. 
 
5.3.3.1 Dispersion 

 

d!

d"
 is the rate of change of angle with ! . 

  

d sin! = m"

d cos!d! = md"

d!

d"
=

m

d cos!

 

 !  small, 
 

d!

d"
#

m

d
 

 
5.3.3.2 Free Spectral Range 
Don't want overlap of first order with second order fringes. 
Overlap  happens if 

  
!

red
m = !

blue
m +1( ) . 

 
 m!" # "  where 

 
!" = "

red
# "

blue
 and 

  

! =
!

red
" !

blue

2
 

So 
 

!" =
"

m
 

Typically   m ~ 2,3  

  !" #100 $ 200nm  
 
5.3.3.3 Resolving Power 

 
Just resolved if the 1st minimum of one overlaps the peak of the other. 
How wide are the diffraction peaks? 
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I = I
o

sin
2 N!d sin"

#
$
%&

'
()

sin
2 !d sin"

#
$
%&

'
()

 

(forgetting the slit width) 
Width of the peaks is determined by the top part of this equation, as the bottom one varies slowly. 

First minimum is 
 

!

N
 away in units of 

  

!d sin"

#
.  

  

sin! =
"

Nd
+

m"

d
 

At peak   d sin! = m" . 1st minimum 
  
Nd sin! = Nm +1( )" . 

Suppose that you have two lines !  and ! + "! . The peak of one wants to land on the minimum 
of the next. 

  

m!

d
= sin" =

Nm +1( ) ! + #!( )
Nd

 

  Nm! = Nm! + Nm"! + ! + "!  
!"  can be neglected, as it is small compared to the other factors. 

  

!"

"
=

1

Nm
=

1

resolving power
 

!

"!
 is typically about 

  

1

Nm
!10

4 . 

 
5.3.4 Comparison with FPE 

 Diffraction Grating Fabry-Perot Etalon 

Resolving power !

"!
  10

4  

  

!m "

1# "
$10

6  

Free Spectral Range   ~ 100nm    0.01nm  

Finesse !"
#"

  
  

!

m

Nm

!
= N ~ 10

4
"10

5   ~ 100  

The major disadvantage is that the diffraction grating has a much lower resolving power. It does 
however have a wider spectral range, which is generally much more important. 
 
5.4 2D Diffraction 
So far we have had 1D apertures, and a path delay given by   xsin! . 
In general, if you have a 2D aperture; 
! = angle to y-z plane 
! = angle to x-z plane. 
Distances 

  
x,y  across aperture, path delay 

  
xsin! + y sin" . 

 

  
E !,"( ) = E x,y( )e

i
2#
$

xsin!+y sin"( )
dxdy%%  
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We usually define 
  

u =
2!

"
sin#  and 

  

v =
2!

"
sin#  

So; 

  
E u,v( ) = E x,y( )ei ux+vy( )

dxdy!!  
This integral is easy or impossible depending on the limits. (i.e. the shape of the aperture) 
 
 
5.4.1 Rectangle aperture (easy case) 

 

Phase difference 
  
=

2!

"
xsin# +

2!

"
y sin$ = ux + vy  

  

A !,"( ) = E x,y( )ei ux+vy( )
dx

#a
2

a
2$ dy

#b
2

b
2$  

Limits are independent  easy. 
If constant illumination; 

  

E
o

2 eiuxdx
!a

2

a
2" eivydy

!b
2

b
2"  

Already done; 
(wide slit) 

  

= E
o

2
absinc

ua

2

!
"#

$
%&

sinc
vb

2

!
"#

$
%&

 

The intensity is proportional to 
  

sinc
2 ua

2

!
"#

$
%&

sinc
2 vb

2

!
"#

$
%&

. 

  u ! sin"  and 
  
v ! sin" . 

 
= PSF of rectangular telescope. 
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5.4.2 Circular aperture 
This is difficult as x-limits depend on y and vice-versa. 
 polar coordinates. 
Aperture 

  
x,y( )   

  
x = p cos!  and 

  
y = p sin! . 

These parameterise distances across observer plane. 

 

  
u =

2!

"
q cos#  

  
v =

2!

"
q sin#  

  

A q,!( ) = f x,y( )ei ux+vy( )
dxdy""

= e
i
2#
$

qpcos! cos%+qpsin! sin%( )
dp.pd%

0

2#

"0

a
2"

= e
ikqpcos %&!( )

pdpd%
0

2#

"0

a
2"

 

Integral turns out to involve a Bessel function 
  
J

1
. 

  

A q,!( ) "
2J

1

2#aq

$
%
&'

(
)*

2#aq

$

+

,

-
-
-
-
-

.

/

0
0
0
0
0

 

(do not learn this…) 

 
q is the angular distance from the center. 
 intensity pattern 
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in 2D: 

 
This is known as the Airy function = PSF of a telescope. 
 resolution of telescope; "Rayleigh resolution" if the peak of one star lands on the first Airy 
minimum of another. 

 
  

1.22
!

a
 is the resolution in RADIANS. 

 
5.5 Radio interferometry 
For a single telescope  10 arcminutes. 

 
Each bit of the source can be considered as a separate radiator. It will the shift the fringe pattern 
a little. If the source is big enough, then the fringes will wash out. 
If the slits are wide apart, then in general phase differences get bigger.  smaller source will still 
wash out the fringes. 
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Fringe visibility (telescope separation)  FT map of sky. 
 
5.6 Fresnel diffraction 
5.6.1 Fraunhofer & Fresnel 
- Fraunhofer - assumed we were talking about far-field diffraction, so the phase varies linearly 
across the aperture. 

 
If near-field, you can't assume this.  

 

  
PD = y 2

+ z2
! z  
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If 
 
y << z , 

  

PD = z 1+
y 2

z2
! z " z 1+

y 2

2z2

#

$%
&

'(
! z "

y 2

2z
 

(through binomial) 

 phase difference between those two is 
  

2!

"

y
2

2z
=
!y

2

"z
 

 varies quadratically across the aperture. 
When do we have to worry about this? 

 path difference  i.e. Fraunhofer diffraction only if 
  
z >>

y
2

!
. This is known as the Rayleigh 

distance. 
Examples; 

  
y = 1mm ,   ! ~ 500nm     z = 2m . 

  
y = 100m ,   ! = 0.1m     10

5
m  

 
5.6.2 Fresnel diffraction 
Problems; 
- Quadratic phase variation (i.e. non-linear.) 
- Amplitudes vary due to different propagation distances. 

- Obliquity factor 
 

1

2
1+ cos!( )  (detailed explanation is beyond this course, and is covered in an 

appendix of Hecht). 
 
5.6.3 Circular apertures, on axis 

 

- Close to the axis, waves reinforce each other until the phase difference
  

y
2

2z
 from the central 

wave becomes 
 

!
2

, which corresponds to ! phase shift. 

i.e. 
  
0 < y < !z  

Phasors; 

 
This is known as the first Half-Period Zone, known as a Fresnel HPZ. 
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As zones further out; 
- Zones get bigger; more emission. 
BUT 
- Amplitudes will get smaller. 
BUT 
- Obliquity factor will lower amplitude. 
 

 
HPZ every time the spiral crosses a central x axis. 
 
HPZ1 gives twice the undestructed amplitude. 
- Block 1st HPZ.  amplitude = unobstructed. 
- Block alternate zones.  

 
- Very bright spot on axis. (Fresnel lens). Destructive part is gone, hence only left with the 
constructive. 
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5.6.4 Straight edges and slits 

 

Phase differences; at a height of y, phase difference 
  

2!

"

y
2

2z
=
!y

2

"z
. 

Let 
  

v = y
2

!z
. 

At height y, phase difference
  

=
1

2
!v

2 . 

 
Add phasors.  Cornu spiral.  
Hence can produce resultant amplitudes for waves from height 

  
y

1
! y

2
. 

 
 

  
v

1
,v

2
 correspond to 

  
y

1
,y

2
. 

e.g. 
  
v

1
= 1 , 

  
v

2
= 2 . 

Consider the case where we have a semi-infinite obstruction, and we position ourselves at 
several different points. 
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Slit slowly gets wider; amplitude follows the Cornu spiral. 
 
 



PC 2312 - Wave Optics - Notes 

57 
 

Exam question; 

 
Estimate the slit width at which the light intensity is at a maximum. 

At A, phase shift 
  

1

2
!v

2
=
!

2
. At B, phase shift = ! . 

Where are the points A and B? 

  

v = y
2

!z
 

A occurs at the point where the phase shift is 
  

!y
2

"z
=
!

2
 i.e. 

  

y =
!z

2
. 

Put in numbers 
  

y =
550x10

!9
x0.1

2
= 0.166mm  

At B, phase shift is ! ; 

  

!y
2

"z
= !

y = "z = 0.234mm

 

The maximum point is around half the distance between A and B. So use the half-way point 
between the above calculations. half-width of the slit will be around   0.2mm , so the slit width is 
  0.4mm . 


